Skip to main content
Evaluate
Tick mark Image
Expand
Tick mark Image

Similar Problems from Web Search

Share

\frac{\frac{3-a}{2a-4}}{\frac{5}{a-2}+\frac{\left(-a-2\right)\left(a-2\right)}{a-2}}
To add or subtract expressions, expand them to make their denominators the same. Multiply -a-2 times \frac{a-2}{a-2}.
\frac{\frac{3-a}{2a-4}}{\frac{5+\left(-a-2\right)\left(a-2\right)}{a-2}}
Since \frac{5}{a-2} and \frac{\left(-a-2\right)\left(a-2\right)}{a-2} have the same denominator, add them by adding their numerators.
\frac{\frac{3-a}{2a-4}}{\frac{5-a^{2}+2a-2a+4}{a-2}}
Do the multiplications in 5+\left(-a-2\right)\left(a-2\right).
\frac{\frac{3-a}{2a-4}}{\frac{9-a^{2}}{a-2}}
Combine like terms in 5-a^{2}+2a-2a+4.
\frac{\left(3-a\right)\left(a-2\right)}{\left(2a-4\right)\left(9-a^{2}\right)}
Divide \frac{3-a}{2a-4} by \frac{9-a^{2}}{a-2} by multiplying \frac{3-a}{2a-4} by the reciprocal of \frac{9-a^{2}}{a-2}.
\frac{\left(a-2\right)\left(-a+3\right)}{2\left(a-3\right)\left(a-2\right)\left(-a-3\right)}
Factor the expressions that are not already factored.
\frac{-\left(a-3\right)\left(a-2\right)}{2\left(a-3\right)\left(a-2\right)\left(-a-3\right)}
Extract the negative sign in 3-a.
\frac{-1}{2\left(-a-3\right)}
Cancel out \left(a-3\right)\left(a-2\right) in both numerator and denominator.
\frac{-1}{-2a-6}
Expand the expression.
\frac{\frac{3-a}{2a-4}}{\frac{5}{a-2}+\frac{\left(-a-2\right)\left(a-2\right)}{a-2}}
To add or subtract expressions, expand them to make their denominators the same. Multiply -a-2 times \frac{a-2}{a-2}.
\frac{\frac{3-a}{2a-4}}{\frac{5+\left(-a-2\right)\left(a-2\right)}{a-2}}
Since \frac{5}{a-2} and \frac{\left(-a-2\right)\left(a-2\right)}{a-2} have the same denominator, add them by adding their numerators.
\frac{\frac{3-a}{2a-4}}{\frac{5-a^{2}+2a-2a+4}{a-2}}
Do the multiplications in 5+\left(-a-2\right)\left(a-2\right).
\frac{\frac{3-a}{2a-4}}{\frac{9-a^{2}}{a-2}}
Combine like terms in 5-a^{2}+2a-2a+4.
\frac{\left(3-a\right)\left(a-2\right)}{\left(2a-4\right)\left(9-a^{2}\right)}
Divide \frac{3-a}{2a-4} by \frac{9-a^{2}}{a-2} by multiplying \frac{3-a}{2a-4} by the reciprocal of \frac{9-a^{2}}{a-2}.
\frac{\left(a-2\right)\left(-a+3\right)}{2\left(a-3\right)\left(a-2\right)\left(-a-3\right)}
Factor the expressions that are not already factored.
\frac{-\left(a-3\right)\left(a-2\right)}{2\left(a-3\right)\left(a-2\right)\left(-a-3\right)}
Extract the negative sign in 3-a.
\frac{-1}{2\left(-a-3\right)}
Cancel out \left(a-3\right)\left(a-2\right) in both numerator and denominator.
\frac{-1}{-2a-6}
Expand the expression.