Evaluate
\frac{1}{2\left(a+3\right)}
Expand
\frac{1}{2\left(a+3\right)}
Quiz
Polynomial
5 problems similar to:
\frac { 3 - a } { 2 a - 4 } \div ( \frac { 5 } { a - 2 } - a - 2 )
Share
Copied to clipboard
\frac{\frac{3-a}{2a-4}}{\frac{5}{a-2}+\frac{\left(-a-2\right)\left(a-2\right)}{a-2}}
To add or subtract expressions, expand them to make their denominators the same. Multiply -a-2 times \frac{a-2}{a-2}.
\frac{\frac{3-a}{2a-4}}{\frac{5+\left(-a-2\right)\left(a-2\right)}{a-2}}
Since \frac{5}{a-2} and \frac{\left(-a-2\right)\left(a-2\right)}{a-2} have the same denominator, add them by adding their numerators.
\frac{\frac{3-a}{2a-4}}{\frac{5-a^{2}+2a-2a+4}{a-2}}
Do the multiplications in 5+\left(-a-2\right)\left(a-2\right).
\frac{\frac{3-a}{2a-4}}{\frac{9-a^{2}}{a-2}}
Combine like terms in 5-a^{2}+2a-2a+4.
\frac{\left(3-a\right)\left(a-2\right)}{\left(2a-4\right)\left(9-a^{2}\right)}
Divide \frac{3-a}{2a-4} by \frac{9-a^{2}}{a-2} by multiplying \frac{3-a}{2a-4} by the reciprocal of \frac{9-a^{2}}{a-2}.
\frac{\left(a-2\right)\left(-a+3\right)}{2\left(a-3\right)\left(a-2\right)\left(-a-3\right)}
Factor the expressions that are not already factored.
\frac{-\left(a-3\right)\left(a-2\right)}{2\left(a-3\right)\left(a-2\right)\left(-a-3\right)}
Extract the negative sign in 3-a.
\frac{-1}{2\left(-a-3\right)}
Cancel out \left(a-3\right)\left(a-2\right) in both numerator and denominator.
\frac{-1}{-2a-6}
Expand the expression.
\frac{\frac{3-a}{2a-4}}{\frac{5}{a-2}+\frac{\left(-a-2\right)\left(a-2\right)}{a-2}}
To add or subtract expressions, expand them to make their denominators the same. Multiply -a-2 times \frac{a-2}{a-2}.
\frac{\frac{3-a}{2a-4}}{\frac{5+\left(-a-2\right)\left(a-2\right)}{a-2}}
Since \frac{5}{a-2} and \frac{\left(-a-2\right)\left(a-2\right)}{a-2} have the same denominator, add them by adding their numerators.
\frac{\frac{3-a}{2a-4}}{\frac{5-a^{2}+2a-2a+4}{a-2}}
Do the multiplications in 5+\left(-a-2\right)\left(a-2\right).
\frac{\frac{3-a}{2a-4}}{\frac{9-a^{2}}{a-2}}
Combine like terms in 5-a^{2}+2a-2a+4.
\frac{\left(3-a\right)\left(a-2\right)}{\left(2a-4\right)\left(9-a^{2}\right)}
Divide \frac{3-a}{2a-4} by \frac{9-a^{2}}{a-2} by multiplying \frac{3-a}{2a-4} by the reciprocal of \frac{9-a^{2}}{a-2}.
\frac{\left(a-2\right)\left(-a+3\right)}{2\left(a-3\right)\left(a-2\right)\left(-a-3\right)}
Factor the expressions that are not already factored.
\frac{-\left(a-3\right)\left(a-2\right)}{2\left(a-3\right)\left(a-2\right)\left(-a-3\right)}
Extract the negative sign in 3-a.
\frac{-1}{2\left(-a-3\right)}
Cancel out \left(a-3\right)\left(a-2\right) in both numerator and denominator.
\frac{-1}{-2a-6}
Expand the expression.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}