Skip to main content
Evaluate
Tick mark Image
Real Part
Tick mark Image

Similar Problems from Web Search

Share

\frac{\left(3-5i\right)\left(3-5i\right)}{\left(3+5i\right)\left(3-5i\right)}
Multiply both numerator and denominator by the complex conjugate of the denominator, 3-5i.
\frac{\left(3-5i\right)\left(3-5i\right)}{3^{2}-5^{2}i^{2}}
Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{\left(3-5i\right)\left(3-5i\right)}{34}
By definition, i^{2} is -1. Calculate the denominator.
\frac{3\times 3+3\times \left(-5i\right)-5i\times 3-5\left(-5\right)i^{2}}{34}
Multiply complex numbers 3-5i and 3-5i like you multiply binomials.
\frac{3\times 3+3\times \left(-5i\right)-5i\times 3-5\left(-5\right)\left(-1\right)}{34}
By definition, i^{2} is -1.
\frac{9-15i-15i-25}{34}
Do the multiplications in 3\times 3+3\times \left(-5i\right)-5i\times 3-5\left(-5\right)\left(-1\right).
\frac{9-25+\left(-15-15\right)i}{34}
Combine the real and imaginary parts in 9-15i-15i-25.
\frac{-16-30i}{34}
Do the additions in 9-25+\left(-15-15\right)i.
-\frac{8}{17}-\frac{15}{17}i
Divide -16-30i by 34 to get -\frac{8}{17}-\frac{15}{17}i.
Re(\frac{\left(3-5i\right)\left(3-5i\right)}{\left(3+5i\right)\left(3-5i\right)})
Multiply both numerator and denominator of \frac{3-5i}{3+5i} by the complex conjugate of the denominator, 3-5i.
Re(\frac{\left(3-5i\right)\left(3-5i\right)}{3^{2}-5^{2}i^{2}})
Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
Re(\frac{\left(3-5i\right)\left(3-5i\right)}{34})
By definition, i^{2} is -1. Calculate the denominator.
Re(\frac{3\times 3+3\times \left(-5i\right)-5i\times 3-5\left(-5\right)i^{2}}{34})
Multiply complex numbers 3-5i and 3-5i like you multiply binomials.
Re(\frac{3\times 3+3\times \left(-5i\right)-5i\times 3-5\left(-5\right)\left(-1\right)}{34})
By definition, i^{2} is -1.
Re(\frac{9-15i-15i-25}{34})
Do the multiplications in 3\times 3+3\times \left(-5i\right)-5i\times 3-5\left(-5\right)\left(-1\right).
Re(\frac{9-25+\left(-15-15\right)i}{34})
Combine the real and imaginary parts in 9-15i-15i-25.
Re(\frac{-16-30i}{34})
Do the additions in 9-25+\left(-15-15\right)i.
Re(-\frac{8}{17}-\frac{15}{17}i)
Divide -16-30i by 34 to get -\frac{8}{17}-\frac{15}{17}i.
-\frac{8}{17}
The real part of -\frac{8}{17}-\frac{15}{17}i is -\frac{8}{17}.