Solve for x
x\in \left(-\infty,\frac{3}{7}\right)\cup \left(3,\infty\right)
Graph
Share
Copied to clipboard
\frac{3-4x}{x-3}-\frac{x-3}{x-3}<\frac{2x+3}{x-3}
To add or subtract expressions, expand them to make their denominators the same. Multiply 1 times \frac{x-3}{x-3}.
\frac{3-4x-\left(x-3\right)}{x-3}<\frac{2x+3}{x-3}
Since \frac{3-4x}{x-3} and \frac{x-3}{x-3} have the same denominator, subtract them by subtracting their numerators.
\frac{3-4x-x+3}{x-3}<\frac{2x+3}{x-3}
Do the multiplications in 3-4x-\left(x-3\right).
\frac{6-5x}{x-3}<\frac{2x+3}{x-3}
Combine like terms in 3-4x-x+3.
\frac{6-5x}{x-3}-\frac{2x+3}{x-3}<0
Subtract \frac{2x+3}{x-3} from both sides.
\frac{6-5x-\left(2x+3\right)}{x-3}<0
Since \frac{6-5x}{x-3} and \frac{2x+3}{x-3} have the same denominator, subtract them by subtracting their numerators.
\frac{6-5x-2x-3}{x-3}<0
Do the multiplications in 6-5x-\left(2x+3\right).
\frac{3-7x}{x-3}<0
Combine like terms in 6-5x-2x-3.
3-7x>0 x-3<0
For the quotient to be negative, 3-7x and x-3 have to be of the opposite signs. Consider the case when 3-7x is positive and x-3 is negative.
x<\frac{3}{7}
The solution satisfying both inequalities is x<\frac{3}{7}.
x-3>0 3-7x<0
Consider the case when x-3 is positive and 3-7x is negative.
x>3
The solution satisfying both inequalities is x>3.
x<\frac{3}{7}\text{; }x>3
The final solution is the union of the obtained solutions.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}