Skip to main content
Evaluate
Tick mark Image
Real Part
Tick mark Image

Similar Problems from Web Search

Share

\frac{\left(3-4i\right)i}{1i^{2}}
Multiply both numerator and denominator by imaginary unit i.
\frac{\left(3-4i\right)i}{-1}
By definition, i^{2} is -1. Calculate the denominator.
\frac{3i-4i^{2}}{-1}
Multiply 3-4i times i.
\frac{3i-4\left(-1\right)}{-1}
By definition, i^{2} is -1.
\frac{4+3i}{-1}
Do the multiplications in 3i-4\left(-1\right). Reorder the terms.
-4-3i
Divide 4+3i by -1 to get -4-3i.
Re(\frac{\left(3-4i\right)i}{1i^{2}})
Multiply both numerator and denominator of \frac{3-4i}{i} by imaginary unit i.
Re(\frac{\left(3-4i\right)i}{-1})
By definition, i^{2} is -1. Calculate the denominator.
Re(\frac{3i-4i^{2}}{-1})
Multiply 3-4i times i.
Re(\frac{3i-4\left(-1\right)}{-1})
By definition, i^{2} is -1.
Re(\frac{4+3i}{-1})
Do the multiplications in 3i-4\left(-1\right). Reorder the terms.
Re(-4-3i)
Divide 4+3i by -1 to get -4-3i.
-4
The real part of -4-3i is -4.