Skip to main content
Evaluate
Tick mark Image
Real Part
Tick mark Image

Similar Problems from Web Search

Share

\frac{\left(3-4i\right)\left(1-i\right)}{\left(1+i\right)\left(1-i\right)}
Multiply both numerator and denominator by the complex conjugate of the denominator, 1-i.
\frac{\left(3-4i\right)\left(1-i\right)}{1^{2}-i^{2}}
Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{\left(3-4i\right)\left(1-i\right)}{2}
By definition, i^{2} is -1. Calculate the denominator.
\frac{3\times 1+3\left(-i\right)-4i-4\left(-1\right)i^{2}}{2}
Multiply complex numbers 3-4i and 1-i like you multiply binomials.
\frac{3\times 1+3\left(-i\right)-4i-4\left(-1\right)\left(-1\right)}{2}
By definition, i^{2} is -1.
\frac{3-3i-4i-4}{2}
Do the multiplications in 3\times 1+3\left(-i\right)-4i-4\left(-1\right)\left(-1\right).
\frac{3-4+\left(-3-4\right)i}{2}
Combine the real and imaginary parts in 3-3i-4i-4.
\frac{-1-7i}{2}
Do the additions in 3-4+\left(-3-4\right)i.
-\frac{1}{2}-\frac{7}{2}i
Divide -1-7i by 2 to get -\frac{1}{2}-\frac{7}{2}i.
Re(\frac{\left(3-4i\right)\left(1-i\right)}{\left(1+i\right)\left(1-i\right)})
Multiply both numerator and denominator of \frac{3-4i}{1+i} by the complex conjugate of the denominator, 1-i.
Re(\frac{\left(3-4i\right)\left(1-i\right)}{1^{2}-i^{2}})
Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
Re(\frac{\left(3-4i\right)\left(1-i\right)}{2})
By definition, i^{2} is -1. Calculate the denominator.
Re(\frac{3\times 1+3\left(-i\right)-4i-4\left(-1\right)i^{2}}{2})
Multiply complex numbers 3-4i and 1-i like you multiply binomials.
Re(\frac{3\times 1+3\left(-i\right)-4i-4\left(-1\right)\left(-1\right)}{2})
By definition, i^{2} is -1.
Re(\frac{3-3i-4i-4}{2})
Do the multiplications in 3\times 1+3\left(-i\right)-4i-4\left(-1\right)\left(-1\right).
Re(\frac{3-4+\left(-3-4\right)i}{2})
Combine the real and imaginary parts in 3-3i-4i-4.
Re(\frac{-1-7i}{2})
Do the additions in 3-4+\left(-3-4\right)i.
Re(-\frac{1}{2}-\frac{7}{2}i)
Divide -1-7i by 2 to get -\frac{1}{2}-\frac{7}{2}i.
-\frac{1}{2}
The real part of -\frac{1}{2}-\frac{7}{2}i is -\frac{1}{2}.