Skip to main content
Evaluate
Tick mark Image
Real Part
Tick mark Image

Similar Problems from Web Search

Share

\frac{\left(3-4i\right)\left(-7-9i\right)}{\left(-7+9i\right)\left(-7-9i\right)}
Multiply both numerator and denominator by the complex conjugate of the denominator, -7-9i.
\frac{\left(3-4i\right)\left(-7-9i\right)}{\left(-7\right)^{2}-9^{2}i^{2}}
Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{\left(3-4i\right)\left(-7-9i\right)}{130}
By definition, i^{2} is -1. Calculate the denominator.
\frac{3\left(-7\right)+3\times \left(-9i\right)-4i\left(-7\right)-4\left(-9\right)i^{2}}{130}
Multiply complex numbers 3-4i and -7-9i like you multiply binomials.
\frac{3\left(-7\right)+3\times \left(-9i\right)-4i\left(-7\right)-4\left(-9\right)\left(-1\right)}{130}
By definition, i^{2} is -1.
\frac{-21-27i+28i-36}{130}
Do the multiplications in 3\left(-7\right)+3\times \left(-9i\right)-4i\left(-7\right)-4\left(-9\right)\left(-1\right).
\frac{-21-36+\left(-27+28\right)i}{130}
Combine the real and imaginary parts in -21-27i+28i-36.
\frac{-57+i}{130}
Do the additions in -21-36+\left(-27+28\right)i.
-\frac{57}{130}+\frac{1}{130}i
Divide -57+i by 130 to get -\frac{57}{130}+\frac{1}{130}i.
Re(\frac{\left(3-4i\right)\left(-7-9i\right)}{\left(-7+9i\right)\left(-7-9i\right)})
Multiply both numerator and denominator of \frac{3-4i}{-7+9i} by the complex conjugate of the denominator, -7-9i.
Re(\frac{\left(3-4i\right)\left(-7-9i\right)}{\left(-7\right)^{2}-9^{2}i^{2}})
Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
Re(\frac{\left(3-4i\right)\left(-7-9i\right)}{130})
By definition, i^{2} is -1. Calculate the denominator.
Re(\frac{3\left(-7\right)+3\times \left(-9i\right)-4i\left(-7\right)-4\left(-9\right)i^{2}}{130})
Multiply complex numbers 3-4i and -7-9i like you multiply binomials.
Re(\frac{3\left(-7\right)+3\times \left(-9i\right)-4i\left(-7\right)-4\left(-9\right)\left(-1\right)}{130})
By definition, i^{2} is -1.
Re(\frac{-21-27i+28i-36}{130})
Do the multiplications in 3\left(-7\right)+3\times \left(-9i\right)-4i\left(-7\right)-4\left(-9\right)\left(-1\right).
Re(\frac{-21-36+\left(-27+28\right)i}{130})
Combine the real and imaginary parts in -21-27i+28i-36.
Re(\frac{-57+i}{130})
Do the additions in -21-36+\left(-27+28\right)i.
Re(-\frac{57}{130}+\frac{1}{130}i)
Divide -57+i by 130 to get -\frac{57}{130}+\frac{1}{130}i.
-\frac{57}{130}
The real part of -\frac{57}{130}+\frac{1}{130}i is -\frac{57}{130}.