Solve for x
x=-\frac{6}{11}\approx -0.545454545
Graph
Share
Copied to clipboard
3-24x-5\left(1-2x\right)=-\left(3x-4\right)
Multiply both sides of the equation by 10, the least common multiple of 10,2.
3-24x-5+10x=-\left(3x-4\right)
Use the distributive property to multiply -5 by 1-2x.
-2-24x+10x=-\left(3x-4\right)
Subtract 5 from 3 to get -2.
-2-14x=-\left(3x-4\right)
Combine -24x and 10x to get -14x.
-2-14x=-3x-\left(-4\right)
To find the opposite of 3x-4, find the opposite of each term.
-2-14x=-3x+4
The opposite of -4 is 4.
-2-14x+3x=4
Add 3x to both sides.
-2-11x=4
Combine -14x and 3x to get -11x.
-11x=4+2
Add 2 to both sides.
-11x=6
Add 4 and 2 to get 6.
x=\frac{6}{-11}
Divide both sides by -11.
x=-\frac{6}{11}
Fraction \frac{6}{-11} can be rewritten as -\frac{6}{11} by extracting the negative sign.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}