Solve for v
v<4
Share
Copied to clipboard
2\left(3-2v\right)-5\left(3v+2\right)>-80
Multiply both sides of the equation by 10, the least common multiple of 5,2. Since 10 is positive, the inequality direction remains the same.
6-4v-5\left(3v+2\right)>-80
Use the distributive property to multiply 2 by 3-2v.
6-4v-15v-10>-80
Use the distributive property to multiply -5 by 3v+2.
6-19v-10>-80
Combine -4v and -15v to get -19v.
-4-19v>-80
Subtract 10 from 6 to get -4.
-19v>-80+4
Add 4 to both sides.
-19v>-76
Add -80 and 4 to get -76.
v<\frac{-76}{-19}
Divide both sides by -19. Since -19 is negative, the inequality direction is changed.
v<4
Divide -76 by -19 to get 4.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}