Skip to main content
Evaluate
Tick mark Image
Real Part
Tick mark Image

Similar Problems from Web Search

Share

\frac{\left(3-2i\right)\left(3-2i\right)}{\left(3+2i\right)\left(3-2i\right)}
Multiply both numerator and denominator by the complex conjugate of the denominator, 3-2i.
\frac{\left(3-2i\right)\left(3-2i\right)}{3^{2}-2^{2}i^{2}}
Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{\left(3-2i\right)\left(3-2i\right)}{13}
By definition, i^{2} is -1. Calculate the denominator.
\frac{3\times 3+3\times \left(-2i\right)-2i\times 3-2\left(-2\right)i^{2}}{13}
Multiply complex numbers 3-2i and 3-2i like you multiply binomials.
\frac{3\times 3+3\times \left(-2i\right)-2i\times 3-2\left(-2\right)\left(-1\right)}{13}
By definition, i^{2} is -1.
\frac{9-6i-6i-4}{13}
Do the multiplications in 3\times 3+3\times \left(-2i\right)-2i\times 3-2\left(-2\right)\left(-1\right).
\frac{9-4+\left(-6-6\right)i}{13}
Combine the real and imaginary parts in 9-6i-6i-4.
\frac{5-12i}{13}
Do the additions in 9-4+\left(-6-6\right)i.
\frac{5}{13}-\frac{12}{13}i
Divide 5-12i by 13 to get \frac{5}{13}-\frac{12}{13}i.
Re(\frac{\left(3-2i\right)\left(3-2i\right)}{\left(3+2i\right)\left(3-2i\right)})
Multiply both numerator and denominator of \frac{3-2i}{3+2i} by the complex conjugate of the denominator, 3-2i.
Re(\frac{\left(3-2i\right)\left(3-2i\right)}{3^{2}-2^{2}i^{2}})
Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
Re(\frac{\left(3-2i\right)\left(3-2i\right)}{13})
By definition, i^{2} is -1. Calculate the denominator.
Re(\frac{3\times 3+3\times \left(-2i\right)-2i\times 3-2\left(-2\right)i^{2}}{13})
Multiply complex numbers 3-2i and 3-2i like you multiply binomials.
Re(\frac{3\times 3+3\times \left(-2i\right)-2i\times 3-2\left(-2\right)\left(-1\right)}{13})
By definition, i^{2} is -1.
Re(\frac{9-6i-6i-4}{13})
Do the multiplications in 3\times 3+3\times \left(-2i\right)-2i\times 3-2\left(-2\right)\left(-1\right).
Re(\frac{9-4+\left(-6-6\right)i}{13})
Combine the real and imaginary parts in 9-6i-6i-4.
Re(\frac{5-12i}{13})
Do the additions in 9-4+\left(-6-6\right)i.
Re(\frac{5}{13}-\frac{12}{13}i)
Divide 5-12i by 13 to get \frac{5}{13}-\frac{12}{13}i.
\frac{5}{13}
The real part of \frac{5}{13}-\frac{12}{13}i is \frac{5}{13}.