Skip to main content
Evaluate
Tick mark Image

Similar Problems from Web Search

Share

\frac{\left(3-2\sqrt{5}\right)\left(2-5\sqrt{3}\right)}{\left(2+5\sqrt{3}\right)\left(2-5\sqrt{3}\right)}
Rationalize the denominator of \frac{3-2\sqrt{5}}{2+5\sqrt{3}} by multiplying numerator and denominator by 2-5\sqrt{3}.
\frac{\left(3-2\sqrt{5}\right)\left(2-5\sqrt{3}\right)}{2^{2}-\left(5\sqrt{3}\right)^{2}}
Consider \left(2+5\sqrt{3}\right)\left(2-5\sqrt{3}\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{\left(3-2\sqrt{5}\right)\left(2-5\sqrt{3}\right)}{4-\left(5\sqrt{3}\right)^{2}}
Calculate 2 to the power of 2 and get 4.
\frac{\left(3-2\sqrt{5}\right)\left(2-5\sqrt{3}\right)}{4-5^{2}\left(\sqrt{3}\right)^{2}}
Expand \left(5\sqrt{3}\right)^{2}.
\frac{\left(3-2\sqrt{5}\right)\left(2-5\sqrt{3}\right)}{4-25\left(\sqrt{3}\right)^{2}}
Calculate 5 to the power of 2 and get 25.
\frac{\left(3-2\sqrt{5}\right)\left(2-5\sqrt{3}\right)}{4-25\times 3}
The square of \sqrt{3} is 3.
\frac{\left(3-2\sqrt{5}\right)\left(2-5\sqrt{3}\right)}{4-75}
Multiply 25 and 3 to get 75.
\frac{\left(3-2\sqrt{5}\right)\left(2-5\sqrt{3}\right)}{-71}
Subtract 75 from 4 to get -71.
\frac{6-15\sqrt{3}-4\sqrt{5}+10\sqrt{3}\sqrt{5}}{-71}
Apply the distributive property by multiplying each term of 3-2\sqrt{5} by each term of 2-5\sqrt{3}.
\frac{6-15\sqrt{3}-4\sqrt{5}+10\sqrt{15}}{-71}
To multiply \sqrt{3} and \sqrt{5}, multiply the numbers under the square root.
\frac{-6+15\sqrt{3}+4\sqrt{5}-10\sqrt{15}}{71}
Multiply both numerator and denominator by -1.