Skip to main content
Evaluate
Tick mark Image
Factor
Tick mark Image

Similar Problems from Web Search

Share

\frac{\left(3-2\sqrt{3}\right)\left(\sqrt{5}+1\right)}{\left(\sqrt{5}-1\right)\left(\sqrt{5}+1\right)}
Rationalize the denominator of \frac{3-2\sqrt{3}}{\sqrt{5}-1} by multiplying numerator and denominator by \sqrt{5}+1.
\frac{\left(3-2\sqrt{3}\right)\left(\sqrt{5}+1\right)}{\left(\sqrt{5}\right)^{2}-1^{2}}
Consider \left(\sqrt{5}-1\right)\left(\sqrt{5}+1\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{\left(3-2\sqrt{3}\right)\left(\sqrt{5}+1\right)}{5-1}
Square \sqrt{5}. Square 1.
\frac{\left(3-2\sqrt{3}\right)\left(\sqrt{5}+1\right)}{4}
Subtract 1 from 5 to get 4.
\frac{3\sqrt{5}+3-2\sqrt{3}\sqrt{5}-2\sqrt{3}}{4}
Apply the distributive property by multiplying each term of 3-2\sqrt{3} by each term of \sqrt{5}+1.
\frac{3\sqrt{5}+3-2\sqrt{15}-2\sqrt{3}}{4}
To multiply \sqrt{3} and \sqrt{5}, multiply the numbers under the square root.