Skip to main content
Evaluate
Tick mark Image

Similar Problems from Web Search

Share

\frac{3-2\times 2\sqrt{3}}{1-3\sqrt{3}}
Factor 12=2^{2}\times 3. Rewrite the square root of the product \sqrt{2^{2}\times 3} as the product of square roots \sqrt{2^{2}}\sqrt{3}. Take the square root of 2^{2}.
\frac{3-4\sqrt{3}}{1-3\sqrt{3}}
Multiply -2 and 2 to get -4.
\frac{\left(3-4\sqrt{3}\right)\left(1+3\sqrt{3}\right)}{\left(1-3\sqrt{3}\right)\left(1+3\sqrt{3}\right)}
Rationalize the denominator of \frac{3-4\sqrt{3}}{1-3\sqrt{3}} by multiplying numerator and denominator by 1+3\sqrt{3}.
\frac{\left(3-4\sqrt{3}\right)\left(1+3\sqrt{3}\right)}{1^{2}-\left(-3\sqrt{3}\right)^{2}}
Consider \left(1-3\sqrt{3}\right)\left(1+3\sqrt{3}\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{\left(3-4\sqrt{3}\right)\left(1+3\sqrt{3}\right)}{1-\left(-3\sqrt{3}\right)^{2}}
Calculate 1 to the power of 2 and get 1.
\frac{\left(3-4\sqrt{3}\right)\left(1+3\sqrt{3}\right)}{1-\left(-3\right)^{2}\left(\sqrt{3}\right)^{2}}
Expand \left(-3\sqrt{3}\right)^{2}.
\frac{\left(3-4\sqrt{3}\right)\left(1+3\sqrt{3}\right)}{1-9\left(\sqrt{3}\right)^{2}}
Calculate -3 to the power of 2 and get 9.
\frac{\left(3-4\sqrt{3}\right)\left(1+3\sqrt{3}\right)}{1-9\times 3}
The square of \sqrt{3} is 3.
\frac{\left(3-4\sqrt{3}\right)\left(1+3\sqrt{3}\right)}{1-27}
Multiply 9 and 3 to get 27.
\frac{\left(3-4\sqrt{3}\right)\left(1+3\sqrt{3}\right)}{-26}
Subtract 27 from 1 to get -26.
\frac{3+9\sqrt{3}-4\sqrt{3}-12\left(\sqrt{3}\right)^{2}}{-26}
Apply the distributive property by multiplying each term of 3-4\sqrt{3} by each term of 1+3\sqrt{3}.
\frac{3+5\sqrt{3}-12\left(\sqrt{3}\right)^{2}}{-26}
Combine 9\sqrt{3} and -4\sqrt{3} to get 5\sqrt{3}.
\frac{3+5\sqrt{3}-12\times 3}{-26}
The square of \sqrt{3} is 3.
\frac{3+5\sqrt{3}-36}{-26}
Multiply -12 and 3 to get -36.
\frac{-33+5\sqrt{3}}{-26}
Subtract 36 from 3 to get -33.
\frac{33-5\sqrt{3}}{26}
Multiply both numerator and denominator by -1.