Skip to main content
Evaluate
Tick mark Image
Real Part
Tick mark Image

Similar Problems from Web Search

Share

\frac{2}{\left(2-i\right)\left(5+2i\right)}
Subtract 1 from 3 to get 2.
\frac{2}{2\times 5+2\times \left(2i\right)-i\times 5-2i^{2}}
Multiply complex numbers 2-i and 5+2i like you multiply binomials.
\frac{2}{2\times 5+2\times \left(2i\right)-i\times 5-2\left(-1\right)}
By definition, i^{2} is -1.
\frac{2}{10+4i-5i+2}
Do the multiplications in 2\times 5+2\times \left(2i\right)-i\times 5-2\left(-1\right).
\frac{2}{10+2+\left(4-5\right)i}
Combine the real and imaginary parts in 10+4i-5i+2.
\frac{2}{12-i}
Do the additions in 10+2+\left(4-5\right)i.
\frac{2\left(12+i\right)}{\left(12-i\right)\left(12+i\right)}
Multiply both numerator and denominator by the complex conjugate of the denominator, 12+i.
\frac{2\left(12+i\right)}{12^{2}-i^{2}}
Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{2\left(12+i\right)}{145}
By definition, i^{2} is -1. Calculate the denominator.
\frac{2\times 12+2i}{145}
Multiply 2 times 12+i.
\frac{24+2i}{145}
Do the multiplications in 2\times 12+2i.
\frac{24}{145}+\frac{2}{145}i
Divide 24+2i by 145 to get \frac{24}{145}+\frac{2}{145}i.
Re(\frac{2}{\left(2-i\right)\left(5+2i\right)})
Subtract 1 from 3 to get 2.
Re(\frac{2}{2\times 5+2\times \left(2i\right)-i\times 5-2i^{2}})
Multiply complex numbers 2-i and 5+2i like you multiply binomials.
Re(\frac{2}{2\times 5+2\times \left(2i\right)-i\times 5-2\left(-1\right)})
By definition, i^{2} is -1.
Re(\frac{2}{10+4i-5i+2})
Do the multiplications in 2\times 5+2\times \left(2i\right)-i\times 5-2\left(-1\right).
Re(\frac{2}{10+2+\left(4-5\right)i})
Combine the real and imaginary parts in 10+4i-5i+2.
Re(\frac{2}{12-i})
Do the additions in 10+2+\left(4-5\right)i.
Re(\frac{2\left(12+i\right)}{\left(12-i\right)\left(12+i\right)})
Multiply both numerator and denominator of \frac{2}{12-i} by the complex conjugate of the denominator, 12+i.
Re(\frac{2\left(12+i\right)}{12^{2}-i^{2}})
Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
Re(\frac{2\left(12+i\right)}{145})
By definition, i^{2} is -1. Calculate the denominator.
Re(\frac{2\times 12+2i}{145})
Multiply 2 times 12+i.
Re(\frac{24+2i}{145})
Do the multiplications in 2\times 12+2i.
Re(\frac{24}{145}+\frac{2}{145}i)
Divide 24+2i by 145 to get \frac{24}{145}+\frac{2}{145}i.
\frac{24}{145}
The real part of \frac{24}{145}+\frac{2}{145}i is \frac{24}{145}.