Solve for a
a=-13
Share
Copied to clipboard
3-\left(-4\right)=\left(\frac{1}{11}a+\frac{2}{11}\right)\left(-10-\left(-3\right)\right)
Variable a cannot be equal to -2 since division by zero is not defined. Multiply both sides of the equation by -a-2.
3+4=\left(\frac{1}{11}a+\frac{2}{11}\right)\left(-10-\left(-3\right)\right)
The opposite of -4 is 4.
7=\left(\frac{1}{11}a+\frac{2}{11}\right)\left(-10-\left(-3\right)\right)
Add 3 and 4 to get 7.
7=\left(\frac{1}{11}a+\frac{2}{11}\right)\left(-10+3\right)
The opposite of -3 is 3.
7=\left(\frac{1}{11}a+\frac{2}{11}\right)\left(-7\right)
Add -10 and 3 to get -7.
7=-\frac{7}{11}a-\frac{14}{11}
Use the distributive property to multiply \frac{1}{11}a+\frac{2}{11} by -7.
-\frac{7}{11}a-\frac{14}{11}=7
Swap sides so that all variable terms are on the left hand side.
-\frac{7}{11}a=7+\frac{14}{11}
Add \frac{14}{11} to both sides.
-\frac{7}{11}a=\frac{91}{11}
Add 7 and \frac{14}{11} to get \frac{91}{11}.
a=\frac{91}{11}\left(-\frac{11}{7}\right)
Multiply both sides by -\frac{11}{7}, the reciprocal of -\frac{7}{11}.
a=-13
Multiply \frac{91}{11} and -\frac{11}{7} to get -13.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}