Skip to main content
Evaluate
Tick mark Image

Similar Problems from Web Search

Share

\frac{\left(3-\sqrt{5}\right)\left(4-\sqrt{5}\right)}{\left(4+\sqrt{5}\right)\left(4-\sqrt{5}\right)}
Rationalize the denominator of \frac{3-\sqrt{5}}{4+\sqrt{5}} by multiplying numerator and denominator by 4-\sqrt{5}.
\frac{\left(3-\sqrt{5}\right)\left(4-\sqrt{5}\right)}{4^{2}-\left(\sqrt{5}\right)^{2}}
Consider \left(4+\sqrt{5}\right)\left(4-\sqrt{5}\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{\left(3-\sqrt{5}\right)\left(4-\sqrt{5}\right)}{16-5}
Square 4. Square \sqrt{5}.
\frac{\left(3-\sqrt{5}\right)\left(4-\sqrt{5}\right)}{11}
Subtract 5 from 16 to get 11.
\frac{12-3\sqrt{5}-4\sqrt{5}+\left(\sqrt{5}\right)^{2}}{11}
Apply the distributive property by multiplying each term of 3-\sqrt{5} by each term of 4-\sqrt{5}.
\frac{12-7\sqrt{5}+\left(\sqrt{5}\right)^{2}}{11}
Combine -3\sqrt{5} and -4\sqrt{5} to get -7\sqrt{5}.
\frac{12-7\sqrt{5}+5}{11}
The square of \sqrt{5} is 5.
\frac{17-7\sqrt{5}}{11}
Add 12 and 5 to get 17.