Skip to main content
Evaluate
Tick mark Image
Expand
Tick mark Image

Similar Problems from Web Search

Share

\frac{\frac{3\left(a-1\right)}{a-1}-\frac{4}{a-1}}{5-\frac{3}{1-a}}
To add or subtract expressions, expand them to make their denominators the same. Multiply 3 times \frac{a-1}{a-1}.
\frac{\frac{3\left(a-1\right)-4}{a-1}}{5-\frac{3}{1-a}}
Since \frac{3\left(a-1\right)}{a-1} and \frac{4}{a-1} have the same denominator, subtract them by subtracting their numerators.
\frac{\frac{3a-3-4}{a-1}}{5-\frac{3}{1-a}}
Do the multiplications in 3\left(a-1\right)-4.
\frac{\frac{3a-7}{a-1}}{5-\frac{3}{1-a}}
Combine like terms in 3a-3-4.
\frac{\frac{3a-7}{a-1}}{\frac{5\left(1-a\right)}{1-a}-\frac{3}{1-a}}
To add or subtract expressions, expand them to make their denominators the same. Multiply 5 times \frac{1-a}{1-a}.
\frac{\frac{3a-7}{a-1}}{\frac{5\left(1-a\right)-3}{1-a}}
Since \frac{5\left(1-a\right)}{1-a} and \frac{3}{1-a} have the same denominator, subtract them by subtracting their numerators.
\frac{\frac{3a-7}{a-1}}{\frac{5-5a-3}{1-a}}
Do the multiplications in 5\left(1-a\right)-3.
\frac{\frac{3a-7}{a-1}}{\frac{2-5a}{1-a}}
Combine like terms in 5-5a-3.
\frac{\left(3a-7\right)\left(1-a\right)}{\left(a-1\right)\left(2-5a\right)}
Divide \frac{3a-7}{a-1} by \frac{2-5a}{1-a} by multiplying \frac{3a-7}{a-1} by the reciprocal of \frac{2-5a}{1-a}.
\frac{-\left(a-1\right)\left(3a-7\right)}{\left(a-1\right)\left(-5a+2\right)}
Extract the negative sign in 1-a.
\frac{-\left(3a-7\right)}{-5a+2}
Cancel out a-1 in both numerator and denominator.
\frac{-3a-\left(-7\right)}{-5a+2}
To find the opposite of 3a-7, find the opposite of each term.
\frac{-3a+7}{-5a+2}
The opposite of -7 is 7.
\frac{\frac{3\left(a-1\right)}{a-1}-\frac{4}{a-1}}{5-\frac{3}{1-a}}
To add or subtract expressions, expand them to make their denominators the same. Multiply 3 times \frac{a-1}{a-1}.
\frac{\frac{3\left(a-1\right)-4}{a-1}}{5-\frac{3}{1-a}}
Since \frac{3\left(a-1\right)}{a-1} and \frac{4}{a-1} have the same denominator, subtract them by subtracting their numerators.
\frac{\frac{3a-3-4}{a-1}}{5-\frac{3}{1-a}}
Do the multiplications in 3\left(a-1\right)-4.
\frac{\frac{3a-7}{a-1}}{5-\frac{3}{1-a}}
Combine like terms in 3a-3-4.
\frac{\frac{3a-7}{a-1}}{\frac{5\left(1-a\right)}{1-a}-\frac{3}{1-a}}
To add or subtract expressions, expand them to make their denominators the same. Multiply 5 times \frac{1-a}{1-a}.
\frac{\frac{3a-7}{a-1}}{\frac{5\left(1-a\right)-3}{1-a}}
Since \frac{5\left(1-a\right)}{1-a} and \frac{3}{1-a} have the same denominator, subtract them by subtracting their numerators.
\frac{\frac{3a-7}{a-1}}{\frac{5-5a-3}{1-a}}
Do the multiplications in 5\left(1-a\right)-3.
\frac{\frac{3a-7}{a-1}}{\frac{2-5a}{1-a}}
Combine like terms in 5-5a-3.
\frac{\left(3a-7\right)\left(1-a\right)}{\left(a-1\right)\left(2-5a\right)}
Divide \frac{3a-7}{a-1} by \frac{2-5a}{1-a} by multiplying \frac{3a-7}{a-1} by the reciprocal of \frac{2-5a}{1-a}.
\frac{-\left(a-1\right)\left(3a-7\right)}{\left(a-1\right)\left(-5a+2\right)}
Extract the negative sign in 1-a.
\frac{-\left(3a-7\right)}{-5a+2}
Cancel out a-1 in both numerator and denominator.
\frac{-3a-\left(-7\right)}{-5a+2}
To find the opposite of 3a-7, find the opposite of each term.
\frac{-3a+7}{-5a+2}
The opposite of -7 is 7.