Solve for x
x\geq \frac{23}{11}
Graph
Share
Copied to clipboard
3\times 3\left(x-1\right)-12\geq 6\left(x+1\right)-4\left(2x+1\right)
Multiply both sides of the equation by 12, the least common multiple of 4,2,3. Since 12 is positive, the inequality direction remains the same.
9\left(x-1\right)-12\geq 6\left(x+1\right)-4\left(2x+1\right)
Multiply 3 and 3 to get 9.
9x-9-12\geq 6\left(x+1\right)-4\left(2x+1\right)
Use the distributive property to multiply 9 by x-1.
9x-21\geq 6\left(x+1\right)-4\left(2x+1\right)
Subtract 12 from -9 to get -21.
9x-21\geq 6x+6-4\left(2x+1\right)
Use the distributive property to multiply 6 by x+1.
9x-21\geq 6x+6-8x-4
Use the distributive property to multiply -4 by 2x+1.
9x-21\geq -2x+6-4
Combine 6x and -8x to get -2x.
9x-21\geq -2x+2
Subtract 4 from 6 to get 2.
9x-21+2x\geq 2
Add 2x to both sides.
11x-21\geq 2
Combine 9x and 2x to get 11x.
11x\geq 2+21
Add 21 to both sides.
11x\geq 23
Add 2 and 21 to get 23.
x\geq \frac{23}{11}
Divide both sides by 11. Since 11 is positive, the inequality direction remains the same.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}