Solve for x
x=-\frac{3}{4}=-0.75
Graph
Share
Copied to clipboard
20\times 3\left(x-1\right)+12\times 10\left(x+1\right)=120x+15
Multiply both sides of the equation by 60, the least common multiple of 3,5,4.
60\left(x-1\right)+12\times 10\left(x+1\right)=120x+15
Multiply 20 and 3 to get 60.
60x-60+12\times 10\left(x+1\right)=120x+15
Use the distributive property to multiply 60 by x-1.
60x-60+120\left(x+1\right)=120x+15
Multiply 12 and 10 to get 120.
60x-60+120x+120=120x+15
Use the distributive property to multiply 120 by x+1.
180x-60+120=120x+15
Combine 60x and 120x to get 180x.
180x+60=120x+15
Add -60 and 120 to get 60.
180x+60-120x=15
Subtract 120x from both sides.
60x+60=15
Combine 180x and -120x to get 60x.
60x=15-60
Subtract 60 from both sides.
60x=-45
Subtract 60 from 15 to get -45.
x=\frac{-45}{60}
Divide both sides by 60.
x=-\frac{3}{4}
Reduce the fraction \frac{-45}{60} to lowest terms by extracting and canceling out 15.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}