Skip to main content
Evaluate
Tick mark Image
Expand
Tick mark Image

Similar Problems from Web Search

Share

\frac{3\left(x^{2}y^{-7}\right)^{2}\times \left(3x^{-2}y^{4}\right)^{2}}{2\left(xy^{2}\right)^{2}\left(xy\right)^{-3}}
Divide \frac{3\left(x^{2}y^{-7}\right)^{2}}{2\left(xy^{2}\right)^{2}} by \frac{\left(xy\right)^{-3}}{\left(3x^{-2}y^{4}\right)^{2}} by multiplying \frac{3\left(x^{2}y^{-7}\right)^{2}}{2\left(xy^{2}\right)^{2}} by the reciprocal of \frac{\left(xy\right)^{-3}}{\left(3x^{-2}y^{4}\right)^{2}}.
\frac{3\left(x^{2}\right)^{2}\left(y^{-7}\right)^{2}\times \left(3x^{-2}y^{4}\right)^{2}}{2\left(xy^{2}\right)^{2}\left(xy\right)^{-3}}
Expand \left(x^{2}y^{-7}\right)^{2}.
\frac{3x^{4}\left(y^{-7}\right)^{2}\times \left(3x^{-2}y^{4}\right)^{2}}{2\left(xy^{2}\right)^{2}\left(xy\right)^{-3}}
To raise a power to another power, multiply the exponents. Multiply 2 and 2 to get 4.
\frac{3x^{4}y^{-14}\times \left(3x^{-2}y^{4}\right)^{2}}{2\left(xy^{2}\right)^{2}\left(xy\right)^{-3}}
To raise a power to another power, multiply the exponents. Multiply -7 and 2 to get -14.
\frac{3x^{4}y^{-14}\times 3^{2}\left(x^{-2}\right)^{2}\left(y^{4}\right)^{2}}{2\left(xy^{2}\right)^{2}\left(xy\right)^{-3}}
Expand \left(3x^{-2}y^{4}\right)^{2}.
\frac{3x^{4}y^{-14}\times 3^{2}x^{-4}\left(y^{4}\right)^{2}}{2\left(xy^{2}\right)^{2}\left(xy\right)^{-3}}
To raise a power to another power, multiply the exponents. Multiply -2 and 2 to get -4.
\frac{3x^{4}y^{-14}\times 3^{2}x^{-4}y^{8}}{2\left(xy^{2}\right)^{2}\left(xy\right)^{-3}}
To raise a power to another power, multiply the exponents. Multiply 4 and 2 to get 8.
\frac{3x^{4}y^{-14}\times 9x^{-4}y^{8}}{2\left(xy^{2}\right)^{2}\left(xy\right)^{-3}}
Calculate 3 to the power of 2 and get 9.
\frac{27x^{4}y^{-14}x^{-4}y^{8}}{2\left(xy^{2}\right)^{2}\left(xy\right)^{-3}}
Multiply 3 and 9 to get 27.
\frac{27y^{-14}y^{8}}{2\left(xy^{2}\right)^{2}\left(xy\right)^{-3}}
Multiply x^{4} and x^{-4} to get 1.
\frac{27y^{-6}}{2\left(xy^{2}\right)^{2}\left(xy\right)^{-3}}
To multiply powers of the same base, add their exponents. Add -14 and 8 to get -6.
\frac{27y^{-6}}{2x^{2}\left(y^{2}\right)^{2}\left(xy\right)^{-3}}
Expand \left(xy^{2}\right)^{2}.
\frac{27y^{-6}}{2x^{2}y^{4}\left(xy\right)^{-3}}
To raise a power to another power, multiply the exponents. Multiply 2 and 2 to get 4.
\frac{27y^{-6}}{2x^{2}y^{4}x^{-3}y^{-3}}
Expand \left(xy\right)^{-3}.
\frac{27y^{-6}}{2x^{-1}y^{4}y^{-3}}
To multiply powers of the same base, add their exponents. Add 2 and -3 to get -1.
\frac{27y^{-6}}{2x^{-1}y^{1}}
To multiply powers of the same base, add their exponents. Add 4 and -3 to get 1.
\frac{27}{2\times \frac{1}{x}y^{7}}
To divide powers of the same base, subtract the numerator's exponent from the denominator's exponent.
\frac{27}{\frac{2}{x}y^{7}}
Express 2\times \frac{1}{x} as a single fraction.
\frac{27}{\frac{2y^{7}}{x}}
Express \frac{2}{x}y^{7} as a single fraction.
\frac{27x}{2y^{7}}
Divide 27 by \frac{2y^{7}}{x} by multiplying 27 by the reciprocal of \frac{2y^{7}}{x}.
\frac{3\left(x^{2}y^{-7}\right)^{2}\times \left(3x^{-2}y^{4}\right)^{2}}{2\left(xy^{2}\right)^{2}\left(xy\right)^{-3}}
Divide \frac{3\left(x^{2}y^{-7}\right)^{2}}{2\left(xy^{2}\right)^{2}} by \frac{\left(xy\right)^{-3}}{\left(3x^{-2}y^{4}\right)^{2}} by multiplying \frac{3\left(x^{2}y^{-7}\right)^{2}}{2\left(xy^{2}\right)^{2}} by the reciprocal of \frac{\left(xy\right)^{-3}}{\left(3x^{-2}y^{4}\right)^{2}}.
\frac{3\left(x^{2}\right)^{2}\left(y^{-7}\right)^{2}\times \left(3x^{-2}y^{4}\right)^{2}}{2\left(xy^{2}\right)^{2}\left(xy\right)^{-3}}
Expand \left(x^{2}y^{-7}\right)^{2}.
\frac{3x^{4}\left(y^{-7}\right)^{2}\times \left(3x^{-2}y^{4}\right)^{2}}{2\left(xy^{2}\right)^{2}\left(xy\right)^{-3}}
To raise a power to another power, multiply the exponents. Multiply 2 and 2 to get 4.
\frac{3x^{4}y^{-14}\times \left(3x^{-2}y^{4}\right)^{2}}{2\left(xy^{2}\right)^{2}\left(xy\right)^{-3}}
To raise a power to another power, multiply the exponents. Multiply -7 and 2 to get -14.
\frac{3x^{4}y^{-14}\times 3^{2}\left(x^{-2}\right)^{2}\left(y^{4}\right)^{2}}{2\left(xy^{2}\right)^{2}\left(xy\right)^{-3}}
Expand \left(3x^{-2}y^{4}\right)^{2}.
\frac{3x^{4}y^{-14}\times 3^{2}x^{-4}\left(y^{4}\right)^{2}}{2\left(xy^{2}\right)^{2}\left(xy\right)^{-3}}
To raise a power to another power, multiply the exponents. Multiply -2 and 2 to get -4.
\frac{3x^{4}y^{-14}\times 3^{2}x^{-4}y^{8}}{2\left(xy^{2}\right)^{2}\left(xy\right)^{-3}}
To raise a power to another power, multiply the exponents. Multiply 4 and 2 to get 8.
\frac{3x^{4}y^{-14}\times 9x^{-4}y^{8}}{2\left(xy^{2}\right)^{2}\left(xy\right)^{-3}}
Calculate 3 to the power of 2 and get 9.
\frac{27x^{4}y^{-14}x^{-4}y^{8}}{2\left(xy^{2}\right)^{2}\left(xy\right)^{-3}}
Multiply 3 and 9 to get 27.
\frac{27y^{-14}y^{8}}{2\left(xy^{2}\right)^{2}\left(xy\right)^{-3}}
Multiply x^{4} and x^{-4} to get 1.
\frac{27y^{-6}}{2\left(xy^{2}\right)^{2}\left(xy\right)^{-3}}
To multiply powers of the same base, add their exponents. Add -14 and 8 to get -6.
\frac{27y^{-6}}{2x^{2}\left(y^{2}\right)^{2}\left(xy\right)^{-3}}
Expand \left(xy^{2}\right)^{2}.
\frac{27y^{-6}}{2x^{2}y^{4}\left(xy\right)^{-3}}
To raise a power to another power, multiply the exponents. Multiply 2 and 2 to get 4.
\frac{27y^{-6}}{2x^{2}y^{4}x^{-3}y^{-3}}
Expand \left(xy\right)^{-3}.
\frac{27y^{-6}}{2x^{-1}y^{4}y^{-3}}
To multiply powers of the same base, add their exponents. Add 2 and -3 to get -1.
\frac{27y^{-6}}{2x^{-1}y^{1}}
To multiply powers of the same base, add their exponents. Add 4 and -3 to get 1.
\frac{27}{2\times \frac{1}{x}y^{7}}
To divide powers of the same base, subtract the numerator's exponent from the denominator's exponent.
\frac{27}{\frac{2}{x}y^{7}}
Express 2\times \frac{1}{x} as a single fraction.
\frac{27}{\frac{2y^{7}}{x}}
Express \frac{2}{x}y^{7} as a single fraction.
\frac{27x}{2y^{7}}
Divide 27 by \frac{2y^{7}}{x} by multiplying 27 by the reciprocal of \frac{2y^{7}}{x}.