Evaluate
\frac{27x}{2y^{7}}
Expand
\frac{27x}{2y^{7}}
Share
Copied to clipboard
\frac{3\left(x^{2}y^{-7}\right)^{2}\times \left(3x^{-2}y^{4}\right)^{2}}{2\left(xy^{2}\right)^{2}\left(xy\right)^{-3}}
Divide \frac{3\left(x^{2}y^{-7}\right)^{2}}{2\left(xy^{2}\right)^{2}} by \frac{\left(xy\right)^{-3}}{\left(3x^{-2}y^{4}\right)^{2}} by multiplying \frac{3\left(x^{2}y^{-7}\right)^{2}}{2\left(xy^{2}\right)^{2}} by the reciprocal of \frac{\left(xy\right)^{-3}}{\left(3x^{-2}y^{4}\right)^{2}}.
\frac{3\left(x^{2}\right)^{2}\left(y^{-7}\right)^{2}\times \left(3x^{-2}y^{4}\right)^{2}}{2\left(xy^{2}\right)^{2}\left(xy\right)^{-3}}
Expand \left(x^{2}y^{-7}\right)^{2}.
\frac{3x^{4}\left(y^{-7}\right)^{2}\times \left(3x^{-2}y^{4}\right)^{2}}{2\left(xy^{2}\right)^{2}\left(xy\right)^{-3}}
To raise a power to another power, multiply the exponents. Multiply 2 and 2 to get 4.
\frac{3x^{4}y^{-14}\times \left(3x^{-2}y^{4}\right)^{2}}{2\left(xy^{2}\right)^{2}\left(xy\right)^{-3}}
To raise a power to another power, multiply the exponents. Multiply -7 and 2 to get -14.
\frac{3x^{4}y^{-14}\times 3^{2}\left(x^{-2}\right)^{2}\left(y^{4}\right)^{2}}{2\left(xy^{2}\right)^{2}\left(xy\right)^{-3}}
Expand \left(3x^{-2}y^{4}\right)^{2}.
\frac{3x^{4}y^{-14}\times 3^{2}x^{-4}\left(y^{4}\right)^{2}}{2\left(xy^{2}\right)^{2}\left(xy\right)^{-3}}
To raise a power to another power, multiply the exponents. Multiply -2 and 2 to get -4.
\frac{3x^{4}y^{-14}\times 3^{2}x^{-4}y^{8}}{2\left(xy^{2}\right)^{2}\left(xy\right)^{-3}}
To raise a power to another power, multiply the exponents. Multiply 4 and 2 to get 8.
\frac{3x^{4}y^{-14}\times 9x^{-4}y^{8}}{2\left(xy^{2}\right)^{2}\left(xy\right)^{-3}}
Calculate 3 to the power of 2 and get 9.
\frac{27x^{4}y^{-14}x^{-4}y^{8}}{2\left(xy^{2}\right)^{2}\left(xy\right)^{-3}}
Multiply 3 and 9 to get 27.
\frac{27y^{-14}y^{8}}{2\left(xy^{2}\right)^{2}\left(xy\right)^{-3}}
Multiply x^{4} and x^{-4} to get 1.
\frac{27y^{-6}}{2\left(xy^{2}\right)^{2}\left(xy\right)^{-3}}
To multiply powers of the same base, add their exponents. Add -14 and 8 to get -6.
\frac{27y^{-6}}{2x^{2}\left(y^{2}\right)^{2}\left(xy\right)^{-3}}
Expand \left(xy^{2}\right)^{2}.
\frac{27y^{-6}}{2x^{2}y^{4}\left(xy\right)^{-3}}
To raise a power to another power, multiply the exponents. Multiply 2 and 2 to get 4.
\frac{27y^{-6}}{2x^{2}y^{4}x^{-3}y^{-3}}
Expand \left(xy\right)^{-3}.
\frac{27y^{-6}}{2x^{-1}y^{4}y^{-3}}
To multiply powers of the same base, add their exponents. Add 2 and -3 to get -1.
\frac{27y^{-6}}{2x^{-1}y^{1}}
To multiply powers of the same base, add their exponents. Add 4 and -3 to get 1.
\frac{27}{2\times \frac{1}{x}y^{7}}
To divide powers of the same base, subtract the numerator's exponent from the denominator's exponent.
\frac{27}{\frac{2}{x}y^{7}}
Express 2\times \frac{1}{x} as a single fraction.
\frac{27}{\frac{2y^{7}}{x}}
Express \frac{2}{x}y^{7} as a single fraction.
\frac{27x}{2y^{7}}
Divide 27 by \frac{2y^{7}}{x} by multiplying 27 by the reciprocal of \frac{2y^{7}}{x}.
\frac{3\left(x^{2}y^{-7}\right)^{2}\times \left(3x^{-2}y^{4}\right)^{2}}{2\left(xy^{2}\right)^{2}\left(xy\right)^{-3}}
Divide \frac{3\left(x^{2}y^{-7}\right)^{2}}{2\left(xy^{2}\right)^{2}} by \frac{\left(xy\right)^{-3}}{\left(3x^{-2}y^{4}\right)^{2}} by multiplying \frac{3\left(x^{2}y^{-7}\right)^{2}}{2\left(xy^{2}\right)^{2}} by the reciprocal of \frac{\left(xy\right)^{-3}}{\left(3x^{-2}y^{4}\right)^{2}}.
\frac{3\left(x^{2}\right)^{2}\left(y^{-7}\right)^{2}\times \left(3x^{-2}y^{4}\right)^{2}}{2\left(xy^{2}\right)^{2}\left(xy\right)^{-3}}
Expand \left(x^{2}y^{-7}\right)^{2}.
\frac{3x^{4}\left(y^{-7}\right)^{2}\times \left(3x^{-2}y^{4}\right)^{2}}{2\left(xy^{2}\right)^{2}\left(xy\right)^{-3}}
To raise a power to another power, multiply the exponents. Multiply 2 and 2 to get 4.
\frac{3x^{4}y^{-14}\times \left(3x^{-2}y^{4}\right)^{2}}{2\left(xy^{2}\right)^{2}\left(xy\right)^{-3}}
To raise a power to another power, multiply the exponents. Multiply -7 and 2 to get -14.
\frac{3x^{4}y^{-14}\times 3^{2}\left(x^{-2}\right)^{2}\left(y^{4}\right)^{2}}{2\left(xy^{2}\right)^{2}\left(xy\right)^{-3}}
Expand \left(3x^{-2}y^{4}\right)^{2}.
\frac{3x^{4}y^{-14}\times 3^{2}x^{-4}\left(y^{4}\right)^{2}}{2\left(xy^{2}\right)^{2}\left(xy\right)^{-3}}
To raise a power to another power, multiply the exponents. Multiply -2 and 2 to get -4.
\frac{3x^{4}y^{-14}\times 3^{2}x^{-4}y^{8}}{2\left(xy^{2}\right)^{2}\left(xy\right)^{-3}}
To raise a power to another power, multiply the exponents. Multiply 4 and 2 to get 8.
\frac{3x^{4}y^{-14}\times 9x^{-4}y^{8}}{2\left(xy^{2}\right)^{2}\left(xy\right)^{-3}}
Calculate 3 to the power of 2 and get 9.
\frac{27x^{4}y^{-14}x^{-4}y^{8}}{2\left(xy^{2}\right)^{2}\left(xy\right)^{-3}}
Multiply 3 and 9 to get 27.
\frac{27y^{-14}y^{8}}{2\left(xy^{2}\right)^{2}\left(xy\right)^{-3}}
Multiply x^{4} and x^{-4} to get 1.
\frac{27y^{-6}}{2\left(xy^{2}\right)^{2}\left(xy\right)^{-3}}
To multiply powers of the same base, add their exponents. Add -14 and 8 to get -6.
\frac{27y^{-6}}{2x^{2}\left(y^{2}\right)^{2}\left(xy\right)^{-3}}
Expand \left(xy^{2}\right)^{2}.
\frac{27y^{-6}}{2x^{2}y^{4}\left(xy\right)^{-3}}
To raise a power to another power, multiply the exponents. Multiply 2 and 2 to get 4.
\frac{27y^{-6}}{2x^{2}y^{4}x^{-3}y^{-3}}
Expand \left(xy\right)^{-3}.
\frac{27y^{-6}}{2x^{-1}y^{4}y^{-3}}
To multiply powers of the same base, add their exponents. Add 2 and -3 to get -1.
\frac{27y^{-6}}{2x^{-1}y^{1}}
To multiply powers of the same base, add their exponents. Add 4 and -3 to get 1.
\frac{27}{2\times \frac{1}{x}y^{7}}
To divide powers of the same base, subtract the numerator's exponent from the denominator's exponent.
\frac{27}{\frac{2}{x}y^{7}}
Express 2\times \frac{1}{x} as a single fraction.
\frac{27}{\frac{2y^{7}}{x}}
Express \frac{2}{x}y^{7} as a single fraction.
\frac{27x}{2y^{7}}
Divide 27 by \frac{2y^{7}}{x} by multiplying 27 by the reciprocal of \frac{2y^{7}}{x}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}