Evaluate
\frac{27}{4b^{8}}
Expand
\frac{27}{4b^{8}}
Share
Copied to clipboard
\frac{3\left(a^{2}b^{-4}\right)^{2}\times \left(3a^{-2}b\right)^{2}}{\left(2ab^{2}\right)^{2}\left(ab\right)^{-2}}
Divide \frac{3\left(a^{2}b^{-4}\right)^{2}}{\left(2ab^{2}\right)^{2}} by \frac{\left(ab\right)^{-2}}{\left(3a^{-2}b\right)^{2}} by multiplying \frac{3\left(a^{2}b^{-4}\right)^{2}}{\left(2ab^{2}\right)^{2}} by the reciprocal of \frac{\left(ab\right)^{-2}}{\left(3a^{-2}b\right)^{2}}.
\frac{3\left(a^{2}\right)^{2}\left(b^{-4}\right)^{2}\times \left(3a^{-2}b\right)^{2}}{\left(2ab^{2}\right)^{2}\left(ab\right)^{-2}}
Expand \left(a^{2}b^{-4}\right)^{2}.
\frac{3a^{4}\left(b^{-4}\right)^{2}\times \left(3a^{-2}b\right)^{2}}{\left(2ab^{2}\right)^{2}\left(ab\right)^{-2}}
To raise a power to another power, multiply the exponents. Multiply 2 and 2 to get 4.
\frac{3a^{4}b^{-8}\times \left(3a^{-2}b\right)^{2}}{\left(2ab^{2}\right)^{2}\left(ab\right)^{-2}}
To raise a power to another power, multiply the exponents. Multiply -4 and 2 to get -8.
\frac{3a^{4}b^{-8}\times 3^{2}\left(a^{-2}\right)^{2}b^{2}}{\left(2ab^{2}\right)^{2}\left(ab\right)^{-2}}
Expand \left(3a^{-2}b\right)^{2}.
\frac{3a^{4}b^{-8}\times 3^{2}a^{-4}b^{2}}{\left(2ab^{2}\right)^{2}\left(ab\right)^{-2}}
To raise a power to another power, multiply the exponents. Multiply -2 and 2 to get -4.
\frac{3a^{4}b^{-8}\times 9a^{-4}b^{2}}{\left(2ab^{2}\right)^{2}\left(ab\right)^{-2}}
Calculate 3 to the power of 2 and get 9.
\frac{27a^{4}b^{-8}a^{-4}b^{2}}{\left(2ab^{2}\right)^{2}\left(ab\right)^{-2}}
Multiply 3 and 9 to get 27.
\frac{27b^{-8}b^{2}}{\left(2ab^{2}\right)^{2}\left(ab\right)^{-2}}
Multiply a^{4} and a^{-4} to get 1.
\frac{27b^{-6}}{\left(2ab^{2}\right)^{2}\left(ab\right)^{-2}}
To multiply powers of the same base, add their exponents. Add -8 and 2 to get -6.
\frac{27b^{-6}}{2^{2}a^{2}\left(b^{2}\right)^{2}\left(ab\right)^{-2}}
Expand \left(2ab^{2}\right)^{2}.
\frac{27b^{-6}}{2^{2}a^{2}b^{4}\left(ab\right)^{-2}}
To raise a power to another power, multiply the exponents. Multiply 2 and 2 to get 4.
\frac{27b^{-6}}{4a^{2}b^{4}\left(ab\right)^{-2}}
Calculate 2 to the power of 2 and get 4.
\frac{27b^{-6}}{4a^{2}b^{4}a^{-2}b^{-2}}
Expand \left(ab\right)^{-2}.
\frac{27b^{-6}}{4b^{4}b^{-2}}
Multiply a^{2} and a^{-2} to get 1.
\frac{27b^{-6}}{4b^{2}}
To multiply powers of the same base, add their exponents. Add 4 and -2 to get 2.
\frac{27}{4b^{8}}
To divide powers of the same base, subtract the numerator's exponent from the denominator's exponent.
\frac{3\left(a^{2}b^{-4}\right)^{2}\times \left(3a^{-2}b\right)^{2}}{\left(2ab^{2}\right)^{2}\left(ab\right)^{-2}}
Divide \frac{3\left(a^{2}b^{-4}\right)^{2}}{\left(2ab^{2}\right)^{2}} by \frac{\left(ab\right)^{-2}}{\left(3a^{-2}b\right)^{2}} by multiplying \frac{3\left(a^{2}b^{-4}\right)^{2}}{\left(2ab^{2}\right)^{2}} by the reciprocal of \frac{\left(ab\right)^{-2}}{\left(3a^{-2}b\right)^{2}}.
\frac{3\left(a^{2}\right)^{2}\left(b^{-4}\right)^{2}\times \left(3a^{-2}b\right)^{2}}{\left(2ab^{2}\right)^{2}\left(ab\right)^{-2}}
Expand \left(a^{2}b^{-4}\right)^{2}.
\frac{3a^{4}\left(b^{-4}\right)^{2}\times \left(3a^{-2}b\right)^{2}}{\left(2ab^{2}\right)^{2}\left(ab\right)^{-2}}
To raise a power to another power, multiply the exponents. Multiply 2 and 2 to get 4.
\frac{3a^{4}b^{-8}\times \left(3a^{-2}b\right)^{2}}{\left(2ab^{2}\right)^{2}\left(ab\right)^{-2}}
To raise a power to another power, multiply the exponents. Multiply -4 and 2 to get -8.
\frac{3a^{4}b^{-8}\times 3^{2}\left(a^{-2}\right)^{2}b^{2}}{\left(2ab^{2}\right)^{2}\left(ab\right)^{-2}}
Expand \left(3a^{-2}b\right)^{2}.
\frac{3a^{4}b^{-8}\times 3^{2}a^{-4}b^{2}}{\left(2ab^{2}\right)^{2}\left(ab\right)^{-2}}
To raise a power to another power, multiply the exponents. Multiply -2 and 2 to get -4.
\frac{3a^{4}b^{-8}\times 9a^{-4}b^{2}}{\left(2ab^{2}\right)^{2}\left(ab\right)^{-2}}
Calculate 3 to the power of 2 and get 9.
\frac{27a^{4}b^{-8}a^{-4}b^{2}}{\left(2ab^{2}\right)^{2}\left(ab\right)^{-2}}
Multiply 3 and 9 to get 27.
\frac{27b^{-8}b^{2}}{\left(2ab^{2}\right)^{2}\left(ab\right)^{-2}}
Multiply a^{4} and a^{-4} to get 1.
\frac{27b^{-6}}{\left(2ab^{2}\right)^{2}\left(ab\right)^{-2}}
To multiply powers of the same base, add their exponents. Add -8 and 2 to get -6.
\frac{27b^{-6}}{2^{2}a^{2}\left(b^{2}\right)^{2}\left(ab\right)^{-2}}
Expand \left(2ab^{2}\right)^{2}.
\frac{27b^{-6}}{2^{2}a^{2}b^{4}\left(ab\right)^{-2}}
To raise a power to another power, multiply the exponents. Multiply 2 and 2 to get 4.
\frac{27b^{-6}}{4a^{2}b^{4}\left(ab\right)^{-2}}
Calculate 2 to the power of 2 and get 4.
\frac{27b^{-6}}{4a^{2}b^{4}a^{-2}b^{-2}}
Expand \left(ab\right)^{-2}.
\frac{27b^{-6}}{4b^{4}b^{-2}}
Multiply a^{2} and a^{-2} to get 1.
\frac{27b^{-6}}{4b^{2}}
To multiply powers of the same base, add their exponents. Add 4 and -2 to get 2.
\frac{27}{4b^{8}}
To divide powers of the same base, subtract the numerator's exponent from the denominator's exponent.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}