Skip to main content
Evaluate
Tick mark Image
Factor
Tick mark Image

Similar Problems from Web Search

Share

\frac{3\left(3+3\sqrt{3}\right)\left(3+\sqrt{3}\right)}{\left(3-\sqrt{3}\right)\left(3+\sqrt{3}\right)}
Rationalize the denominator of \frac{3\left(3+3\sqrt{3}\right)}{3-\sqrt{3}} by multiplying numerator and denominator by 3+\sqrt{3}.
\frac{3\left(3+3\sqrt{3}\right)\left(3+\sqrt{3}\right)}{3^{2}-\left(\sqrt{3}\right)^{2}}
Consider \left(3-\sqrt{3}\right)\left(3+\sqrt{3}\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{3\left(3+3\sqrt{3}\right)\left(3+\sqrt{3}\right)}{9-3}
Square 3. Square \sqrt{3}.
\frac{3\left(3+3\sqrt{3}\right)\left(3+\sqrt{3}\right)}{6}
Subtract 3 from 9 to get 6.
\frac{\left(9+9\sqrt{3}\right)\left(3+\sqrt{3}\right)}{6}
Use the distributive property to multiply 3 by 3+3\sqrt{3}.
\frac{27+9\sqrt{3}+27\sqrt{3}+9\left(\sqrt{3}\right)^{2}}{6}
Apply the distributive property by multiplying each term of 9+9\sqrt{3} by each term of 3+\sqrt{3}.
\frac{27+36\sqrt{3}+9\left(\sqrt{3}\right)^{2}}{6}
Combine 9\sqrt{3} and 27\sqrt{3} to get 36\sqrt{3}.
\frac{27+36\sqrt{3}+9\times 3}{6}
The square of \sqrt{3} is 3.
\frac{27+36\sqrt{3}+27}{6}
Multiply 9 and 3 to get 27.
\frac{54+36\sqrt{3}}{6}
Add 27 and 27 to get 54.