Solve for t
t>\frac{24}{17}
Share
Copied to clipboard
5\times 3\left(2t-2\right)>2\left(6t-3\right)+t
Multiply both sides of the equation by 10, the least common multiple of 2,5,10. Since 10 is positive, the inequality direction remains the same.
15\left(2t-2\right)>2\left(6t-3\right)+t
Multiply 5 and 3 to get 15.
30t-30>2\left(6t-3\right)+t
Use the distributive property to multiply 15 by 2t-2.
30t-30>12t-6+t
Use the distributive property to multiply 2 by 6t-3.
30t-30>13t-6
Combine 12t and t to get 13t.
30t-30-13t>-6
Subtract 13t from both sides.
17t-30>-6
Combine 30t and -13t to get 17t.
17t>-6+30
Add 30 to both sides.
17t>24
Add -6 and 30 to get 24.
t>\frac{24}{17}
Divide both sides by 17. Since 17 is positive, the inequality direction remains the same.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}