Solve for a
a=\frac{21}{6-5bc}
\left(b=0\text{ or }c\neq \frac{6}{5b}\right)\text{ and }c\neq 0
Solve for b
b=\frac{3\left(2a-7\right)}{5ac}
a\neq 0\text{ and }c\neq 0
Share
Copied to clipboard
3\left(2a-7\right)=b\times 5ac
Variable a cannot be equal to 0 since division by zero is not defined. Multiply both sides of the equation by 5ac.
6a-21=b\times 5ac
Use the distributive property to multiply 3 by 2a-7.
6a-21-b\times 5ac=0
Subtract b\times 5ac from both sides.
6a-21-5bac=0
Multiply -1 and 5 to get -5.
6a-5bac=21
Add 21 to both sides. Anything plus zero gives itself.
\left(6-5bc\right)a=21
Combine all terms containing a.
\frac{\left(6-5bc\right)a}{6-5bc}=\frac{21}{6-5bc}
Divide both sides by 6-5cb.
a=\frac{21}{6-5bc}
Dividing by 6-5cb undoes the multiplication by 6-5cb.
a=\frac{21}{6-5bc}\text{, }a\neq 0
Variable a cannot be equal to 0.
3\left(2a-7\right)=b\times 5ac
Multiply both sides of the equation by 5ac.
6a-21=b\times 5ac
Use the distributive property to multiply 3 by 2a-7.
b\times 5ac=6a-21
Swap sides so that all variable terms are on the left hand side.
5acb=6a-21
The equation is in standard form.
\frac{5acb}{5ac}=\frac{6a-21}{5ac}
Divide both sides by 5ac.
b=\frac{6a-21}{5ac}
Dividing by 5ac undoes the multiplication by 5ac.
b=\frac{3\left(2a-7\right)}{5ac}
Divide 6a-21 by 5ac.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}