Verify
false
Share
Copied to clipboard
\frac{3+8-7}{3\left(-2\right)+4\times 1-7}=-\frac{4}{-9}\text{ and }-\frac{4}{-9}=\frac{4}{9}
Multiply 3 and 1 to get 3. Multiply 4 and 2 to get 8.
\frac{11-7}{3\left(-2\right)+4\times 1-7}=-\frac{4}{-9}\text{ and }-\frac{4}{-9}=\frac{4}{9}
Add 3 and 8 to get 11.
\frac{4}{3\left(-2\right)+4\times 1-7}=-\frac{4}{-9}\text{ and }-\frac{4}{-9}=\frac{4}{9}
Subtract 7 from 11 to get 4.
\frac{4}{-6+4-7}=-\frac{4}{-9}\text{ and }-\frac{4}{-9}=\frac{4}{9}
Multiply 3 and -2 to get -6. Multiply 4 and 1 to get 4.
\frac{4}{-2-7}=-\frac{4}{-9}\text{ and }-\frac{4}{-9}=\frac{4}{9}
Add -6 and 4 to get -2.
\frac{4}{-9}=-\frac{4}{-9}\text{ and }-\frac{4}{-9}=\frac{4}{9}
Subtract 7 from -2 to get -9.
-\frac{4}{9}=-\frac{4}{-9}\text{ and }-\frac{4}{-9}=\frac{4}{9}
Fraction \frac{4}{-9} can be rewritten as -\frac{4}{9} by extracting the negative sign.
-\frac{4}{9}=-\left(-\frac{4}{9}\right)\text{ and }-\frac{4}{-9}=\frac{4}{9}
Fraction \frac{4}{-9} can be rewritten as -\frac{4}{9} by extracting the negative sign.
-\frac{4}{9}=\frac{4}{9}\text{ and }-\frac{4}{-9}=\frac{4}{9}
The opposite of -\frac{4}{9} is \frac{4}{9}.
\text{false}\text{ and }-\frac{4}{-9}=\frac{4}{9}
Compare -\frac{4}{9} and \frac{4}{9}.
\text{false}\text{ and }-\left(-\frac{4}{9}\right)=\frac{4}{9}
Fraction \frac{4}{-9} can be rewritten as -\frac{4}{9} by extracting the negative sign.
\text{false}\text{ and }\frac{4}{9}=\frac{4}{9}
The opposite of -\frac{4}{9} is \frac{4}{9}.
\text{false}\text{ and }\text{true}
Compare \frac{4}{9} and \frac{4}{9}.
\text{false}
The conjunction of \text{false} and \text{true} is \text{false}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}