Skip to main content
Solve for a
Tick mark Image

Similar Problems from Web Search

Share

3\left(-a^{2}-2a+3\right)+3a=16
Multiply both sides of the equation by 2.
3\left(-a^{2}\right)-6a+9+3a=16
Use the distributive property to multiply 3 by -a^{2}-2a+3.
3\left(-a^{2}\right)-3a+9=16
Combine -6a and 3a to get -3a.
3\left(-a^{2}\right)-3a+9-16=0
Subtract 16 from both sides.
3\left(-a^{2}\right)-3a-7=0
Subtract 16 from 9 to get -7.
-3a^{2}-3a-7=0
Multiply 3 and -1 to get -3.
a=\frac{-\left(-3\right)±\sqrt{\left(-3\right)^{2}-4\left(-3\right)\left(-7\right)}}{2\left(-3\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -3 for a, -3 for b, and -7 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
a=\frac{-\left(-3\right)±\sqrt{9-4\left(-3\right)\left(-7\right)}}{2\left(-3\right)}
Square -3.
a=\frac{-\left(-3\right)±\sqrt{9+12\left(-7\right)}}{2\left(-3\right)}
Multiply -4 times -3.
a=\frac{-\left(-3\right)±\sqrt{9-84}}{2\left(-3\right)}
Multiply 12 times -7.
a=\frac{-\left(-3\right)±\sqrt{-75}}{2\left(-3\right)}
Add 9 to -84.
a=\frac{-\left(-3\right)±5\sqrt{3}i}{2\left(-3\right)}
Take the square root of -75.
a=\frac{3±5\sqrt{3}i}{2\left(-3\right)}
The opposite of -3 is 3.
a=\frac{3±5\sqrt{3}i}{-6}
Multiply 2 times -3.
a=\frac{3+5\sqrt{3}i}{-6}
Now solve the equation a=\frac{3±5\sqrt{3}i}{-6} when ± is plus. Add 3 to 5i\sqrt{3}.
a=-\frac{5\sqrt{3}i}{6}-\frac{1}{2}
Divide 3+5i\sqrt{3} by -6.
a=\frac{-5\sqrt{3}i+3}{-6}
Now solve the equation a=\frac{3±5\sqrt{3}i}{-6} when ± is minus. Subtract 5i\sqrt{3} from 3.
a=\frac{5\sqrt{3}i}{6}-\frac{1}{2}
Divide 3-5i\sqrt{3} by -6.
a=-\frac{5\sqrt{3}i}{6}-\frac{1}{2} a=\frac{5\sqrt{3}i}{6}-\frac{1}{2}
The equation is now solved.
3\left(-a^{2}-2a+3\right)+3a=16
Multiply both sides of the equation by 2.
3\left(-a^{2}\right)-6a+9+3a=16
Use the distributive property to multiply 3 by -a^{2}-2a+3.
3\left(-a^{2}\right)-3a+9=16
Combine -6a and 3a to get -3a.
3\left(-a^{2}\right)-3a=16-9
Subtract 9 from both sides.
3\left(-a^{2}\right)-3a=7
Subtract 9 from 16 to get 7.
-3a^{2}-3a=7
Multiply 3 and -1 to get -3.
\frac{-3a^{2}-3a}{-3}=\frac{7}{-3}
Divide both sides by -3.
a^{2}+\left(-\frac{3}{-3}\right)a=\frac{7}{-3}
Dividing by -3 undoes the multiplication by -3.
a^{2}+a=\frac{7}{-3}
Divide -3 by -3.
a^{2}+a=-\frac{7}{3}
Divide 7 by -3.
a^{2}+a+\left(\frac{1}{2}\right)^{2}=-\frac{7}{3}+\left(\frac{1}{2}\right)^{2}
Divide 1, the coefficient of the x term, by 2 to get \frac{1}{2}. Then add the square of \frac{1}{2} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
a^{2}+a+\frac{1}{4}=-\frac{7}{3}+\frac{1}{4}
Square \frac{1}{2} by squaring both the numerator and the denominator of the fraction.
a^{2}+a+\frac{1}{4}=-\frac{25}{12}
Add -\frac{7}{3} to \frac{1}{4} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(a+\frac{1}{2}\right)^{2}=-\frac{25}{12}
Factor a^{2}+a+\frac{1}{4}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(a+\frac{1}{2}\right)^{2}}=\sqrt{-\frac{25}{12}}
Take the square root of both sides of the equation.
a+\frac{1}{2}=\frac{5\sqrt{3}i}{6} a+\frac{1}{2}=-\frac{5\sqrt{3}i}{6}
Simplify.
a=\frac{5\sqrt{3}i}{6}-\frac{1}{2} a=-\frac{5\sqrt{3}i}{6}-\frac{1}{2}
Subtract \frac{1}{2} from both sides of the equation.