Evaluate
\frac{25x-15}{2}
Expand
\frac{25x-15}{2}
Graph
Share
Copied to clipboard
\frac{3\times \frac{4}{-2}-4}{\frac{4}{3-5x}}
Subtract 5 from 3 to get -2.
\frac{3\left(-2\right)-4}{\frac{4}{3-5x}}
Divide 4 by -2 to get -2.
\frac{-6-4}{\frac{4}{3-5x}}
Multiply 3 and -2 to get -6.
\frac{-10}{\frac{4}{3-5x}}
Subtract 4 from -6 to get -10.
\frac{-10\left(3-5x\right)}{4}
Divide -10 by \frac{4}{3-5x} by multiplying -10 by the reciprocal of \frac{4}{3-5x}.
-\frac{5}{2}\left(3-5x\right)
Divide -10\left(3-5x\right) by 4 to get -\frac{5}{2}\left(3-5x\right).
-\frac{5}{2}\times 3-\frac{5}{2}\left(-5\right)x
Use the distributive property to multiply -\frac{5}{2} by 3-5x.
\frac{-5\times 3}{2}-\frac{5}{2}\left(-5\right)x
Express -\frac{5}{2}\times 3 as a single fraction.
\frac{-15}{2}-\frac{5}{2}\left(-5\right)x
Multiply -5 and 3 to get -15.
-\frac{15}{2}-\frac{5}{2}\left(-5\right)x
Fraction \frac{-15}{2} can be rewritten as -\frac{15}{2} by extracting the negative sign.
-\frac{15}{2}+\frac{-5\left(-5\right)}{2}x
Express -\frac{5}{2}\left(-5\right) as a single fraction.
-\frac{15}{2}+\frac{25}{2}x
Multiply -5 and -5 to get 25.
\frac{3\times \frac{4}{-2}-4}{\frac{4}{3-5x}}
Subtract 5 from 3 to get -2.
\frac{3\left(-2\right)-4}{\frac{4}{3-5x}}
Divide 4 by -2 to get -2.
\frac{-6-4}{\frac{4}{3-5x}}
Multiply 3 and -2 to get -6.
\frac{-10}{\frac{4}{3-5x}}
Subtract 4 from -6 to get -10.
\frac{-10\left(3-5x\right)}{4}
Divide -10 by \frac{4}{3-5x} by multiplying -10 by the reciprocal of \frac{4}{3-5x}.
-\frac{5}{2}\left(3-5x\right)
Divide -10\left(3-5x\right) by 4 to get -\frac{5}{2}\left(3-5x\right).
-\frac{5}{2}\times 3-\frac{5}{2}\left(-5\right)x
Use the distributive property to multiply -\frac{5}{2} by 3-5x.
\frac{-5\times 3}{2}-\frac{5}{2}\left(-5\right)x
Express -\frac{5}{2}\times 3 as a single fraction.
\frac{-15}{2}-\frac{5}{2}\left(-5\right)x
Multiply -5 and 3 to get -15.
-\frac{15}{2}-\frac{5}{2}\left(-5\right)x
Fraction \frac{-15}{2} can be rewritten as -\frac{15}{2} by extracting the negative sign.
-\frac{15}{2}+\frac{-5\left(-5\right)}{2}x
Express -\frac{5}{2}\left(-5\right) as a single fraction.
-\frac{15}{2}+\frac{25}{2}x
Multiply -5 and -5 to get 25.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}