Solve for z
z=18
Share
Copied to clipboard
\left(z-4\right)\times 3=\left(z+3\right)\times 2
Variable z cannot be equal to any of the values -3,4 since division by zero is not defined. Multiply both sides of the equation by \left(z-4\right)\left(z+3\right), the least common multiple of z+3,z-4.
3z-12=\left(z+3\right)\times 2
Use the distributive property to multiply z-4 by 3.
3z-12=2z+6
Use the distributive property to multiply z+3 by 2.
3z-12-2z=6
Subtract 2z from both sides.
z-12=6
Combine 3z and -2z to get z.
z=6+12
Add 12 to both sides.
z=18
Add 6 and 12 to get 18.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}