Solve for y
y = \frac{31}{2} = 15\frac{1}{2} = 15.5
Graph
Share
Copied to clipboard
\left(y-8\right)\times 3=y+7
Variable y cannot be equal to any of the values -7,8 since division by zero is not defined. Multiply both sides of the equation by \left(y-8\right)\left(y+7\right), the least common multiple of y+7,y-8.
3y-24=y+7
Use the distributive property to multiply y-8 by 3.
3y-24-y=7
Subtract y from both sides.
2y-24=7
Combine 3y and -y to get 2y.
2y=7+24
Add 24 to both sides.
2y=31
Add 7 and 24 to get 31.
y=\frac{31}{2}
Divide both sides by 2.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}