Evaluate
\frac{x^{4}+11x^{3}-33x^{2}+176x-368}{x^{4}-256}
Expand
\frac{x^{4}+11x^{3}-33x^{2}+176x-368}{x^{4}-256}
Graph
Share
Copied to clipboard
\frac{3\left(x+4\right)}{\left(x-4\right)\left(x+4\right)}+\frac{8\left(x-4\right)}{\left(x-4\right)\left(x+4\right)}+\frac{3+x^{2}}{x^{2}+16}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of x-4 and x+4 is \left(x-4\right)\left(x+4\right). Multiply \frac{3}{x-4} times \frac{x+4}{x+4}. Multiply \frac{8}{x+4} times \frac{x-4}{x-4}.
\frac{3\left(x+4\right)+8\left(x-4\right)}{\left(x-4\right)\left(x+4\right)}+\frac{3+x^{2}}{x^{2}+16}
Since \frac{3\left(x+4\right)}{\left(x-4\right)\left(x+4\right)} and \frac{8\left(x-4\right)}{\left(x-4\right)\left(x+4\right)} have the same denominator, add them by adding their numerators.
\frac{3x+12+8x-32}{\left(x-4\right)\left(x+4\right)}+\frac{3+x^{2}}{x^{2}+16}
Do the multiplications in 3\left(x+4\right)+8\left(x-4\right).
\frac{11x-20}{\left(x-4\right)\left(x+4\right)}+\frac{3+x^{2}}{x^{2}+16}
Combine like terms in 3x+12+8x-32.
\frac{\left(11x-20\right)\left(x^{2}+16\right)}{\left(x-4\right)\left(x+4\right)\left(x^{2}+16\right)}+\frac{\left(3+x^{2}\right)\left(x-4\right)\left(x+4\right)}{\left(x-4\right)\left(x+4\right)\left(x^{2}+16\right)}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of \left(x-4\right)\left(x+4\right) and x^{2}+16 is \left(x-4\right)\left(x+4\right)\left(x^{2}+16\right). Multiply \frac{11x-20}{\left(x-4\right)\left(x+4\right)} times \frac{x^{2}+16}{x^{2}+16}. Multiply \frac{3+x^{2}}{x^{2}+16} times \frac{\left(x-4\right)\left(x+4\right)}{\left(x-4\right)\left(x+4\right)}.
\frac{\left(11x-20\right)\left(x^{2}+16\right)+\left(3+x^{2}\right)\left(x-4\right)\left(x+4\right)}{\left(x-4\right)\left(x+4\right)\left(x^{2}+16\right)}
Since \frac{\left(11x-20\right)\left(x^{2}+16\right)}{\left(x-4\right)\left(x+4\right)\left(x^{2}+16\right)} and \frac{\left(3+x^{2}\right)\left(x-4\right)\left(x+4\right)}{\left(x-4\right)\left(x+4\right)\left(x^{2}+16\right)} have the same denominator, add them by adding their numerators.
\frac{11x^{3}+176x-20x^{2}-320+3x^{2}-48+x^{4}-16x^{2}}{\left(x-4\right)\left(x+4\right)\left(x^{2}+16\right)}
Do the multiplications in \left(11x-20\right)\left(x^{2}+16\right)+\left(3+x^{2}\right)\left(x-4\right)\left(x+4\right).
\frac{11x^{3}+176x-33x^{2}-368+x^{4}}{\left(x-4\right)\left(x+4\right)\left(x^{2}+16\right)}
Combine like terms in 11x^{3}+176x-20x^{2}-320+3x^{2}-48+x^{4}-16x^{2}.
\frac{11x^{3}+176x-33x^{2}-368+x^{4}}{x^{4}-256}
Expand \left(x-4\right)\left(x+4\right)\left(x^{2}+16\right).
\frac{3\left(x+4\right)}{\left(x-4\right)\left(x+4\right)}+\frac{8\left(x-4\right)}{\left(x-4\right)\left(x+4\right)}+\frac{3+x^{2}}{x^{2}+16}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of x-4 and x+4 is \left(x-4\right)\left(x+4\right). Multiply \frac{3}{x-4} times \frac{x+4}{x+4}. Multiply \frac{8}{x+4} times \frac{x-4}{x-4}.
\frac{3\left(x+4\right)+8\left(x-4\right)}{\left(x-4\right)\left(x+4\right)}+\frac{3+x^{2}}{x^{2}+16}
Since \frac{3\left(x+4\right)}{\left(x-4\right)\left(x+4\right)} and \frac{8\left(x-4\right)}{\left(x-4\right)\left(x+4\right)} have the same denominator, add them by adding their numerators.
\frac{3x+12+8x-32}{\left(x-4\right)\left(x+4\right)}+\frac{3+x^{2}}{x^{2}+16}
Do the multiplications in 3\left(x+4\right)+8\left(x-4\right).
\frac{11x-20}{\left(x-4\right)\left(x+4\right)}+\frac{3+x^{2}}{x^{2}+16}
Combine like terms in 3x+12+8x-32.
\frac{\left(11x-20\right)\left(x^{2}+16\right)}{\left(x-4\right)\left(x+4\right)\left(x^{2}+16\right)}+\frac{\left(3+x^{2}\right)\left(x-4\right)\left(x+4\right)}{\left(x-4\right)\left(x+4\right)\left(x^{2}+16\right)}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of \left(x-4\right)\left(x+4\right) and x^{2}+16 is \left(x-4\right)\left(x+4\right)\left(x^{2}+16\right). Multiply \frac{11x-20}{\left(x-4\right)\left(x+4\right)} times \frac{x^{2}+16}{x^{2}+16}. Multiply \frac{3+x^{2}}{x^{2}+16} times \frac{\left(x-4\right)\left(x+4\right)}{\left(x-4\right)\left(x+4\right)}.
\frac{\left(11x-20\right)\left(x^{2}+16\right)+\left(3+x^{2}\right)\left(x-4\right)\left(x+4\right)}{\left(x-4\right)\left(x+4\right)\left(x^{2}+16\right)}
Since \frac{\left(11x-20\right)\left(x^{2}+16\right)}{\left(x-4\right)\left(x+4\right)\left(x^{2}+16\right)} and \frac{\left(3+x^{2}\right)\left(x-4\right)\left(x+4\right)}{\left(x-4\right)\left(x+4\right)\left(x^{2}+16\right)} have the same denominator, add them by adding their numerators.
\frac{11x^{3}+176x-20x^{2}-320+3x^{2}-48+x^{4}-16x^{2}}{\left(x-4\right)\left(x+4\right)\left(x^{2}+16\right)}
Do the multiplications in \left(11x-20\right)\left(x^{2}+16\right)+\left(3+x^{2}\right)\left(x-4\right)\left(x+4\right).
\frac{11x^{3}+176x-33x^{2}-368+x^{4}}{\left(x-4\right)\left(x+4\right)\left(x^{2}+16\right)}
Combine like terms in 11x^{3}+176x-20x^{2}-320+3x^{2}-48+x^{4}-16x^{2}.
\frac{11x^{3}+176x-33x^{2}-368+x^{4}}{x^{4}-256}
Expand \left(x-4\right)\left(x+4\right)\left(x^{2}+16\right).
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}