Skip to main content
Evaluate
Tick mark Image
Expand
Tick mark Image
Graph

Similar Problems from Web Search

Share

\frac{3\left(x+4\right)}{\left(x-4\right)\left(x+4\right)}+\frac{8\left(x-4\right)}{\left(x-4\right)\left(x+4\right)}+\frac{3+x^{2}}{x^{2}+16}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of x-4 and x+4 is \left(x-4\right)\left(x+4\right). Multiply \frac{3}{x-4} times \frac{x+4}{x+4}. Multiply \frac{8}{x+4} times \frac{x-4}{x-4}.
\frac{3\left(x+4\right)+8\left(x-4\right)}{\left(x-4\right)\left(x+4\right)}+\frac{3+x^{2}}{x^{2}+16}
Since \frac{3\left(x+4\right)}{\left(x-4\right)\left(x+4\right)} and \frac{8\left(x-4\right)}{\left(x-4\right)\left(x+4\right)} have the same denominator, add them by adding their numerators.
\frac{3x+12+8x-32}{\left(x-4\right)\left(x+4\right)}+\frac{3+x^{2}}{x^{2}+16}
Do the multiplications in 3\left(x+4\right)+8\left(x-4\right).
\frac{11x-20}{\left(x-4\right)\left(x+4\right)}+\frac{3+x^{2}}{x^{2}+16}
Combine like terms in 3x+12+8x-32.
\frac{\left(11x-20\right)\left(x^{2}+16\right)}{\left(x-4\right)\left(x+4\right)\left(x^{2}+16\right)}+\frac{\left(3+x^{2}\right)\left(x-4\right)\left(x+4\right)}{\left(x-4\right)\left(x+4\right)\left(x^{2}+16\right)}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of \left(x-4\right)\left(x+4\right) and x^{2}+16 is \left(x-4\right)\left(x+4\right)\left(x^{2}+16\right). Multiply \frac{11x-20}{\left(x-4\right)\left(x+4\right)} times \frac{x^{2}+16}{x^{2}+16}. Multiply \frac{3+x^{2}}{x^{2}+16} times \frac{\left(x-4\right)\left(x+4\right)}{\left(x-4\right)\left(x+4\right)}.
\frac{\left(11x-20\right)\left(x^{2}+16\right)+\left(3+x^{2}\right)\left(x-4\right)\left(x+4\right)}{\left(x-4\right)\left(x+4\right)\left(x^{2}+16\right)}
Since \frac{\left(11x-20\right)\left(x^{2}+16\right)}{\left(x-4\right)\left(x+4\right)\left(x^{2}+16\right)} and \frac{\left(3+x^{2}\right)\left(x-4\right)\left(x+4\right)}{\left(x-4\right)\left(x+4\right)\left(x^{2}+16\right)} have the same denominator, add them by adding their numerators.
\frac{11x^{3}+176x-20x^{2}-320+3x^{2}-48+x^{4}-16x^{2}}{\left(x-4\right)\left(x+4\right)\left(x^{2}+16\right)}
Do the multiplications in \left(11x-20\right)\left(x^{2}+16\right)+\left(3+x^{2}\right)\left(x-4\right)\left(x+4\right).
\frac{11x^{3}+176x-33x^{2}-368+x^{4}}{\left(x-4\right)\left(x+4\right)\left(x^{2}+16\right)}
Combine like terms in 11x^{3}+176x-20x^{2}-320+3x^{2}-48+x^{4}-16x^{2}.
\frac{11x^{3}+176x-33x^{2}-368+x^{4}}{x^{4}-256}
Expand \left(x-4\right)\left(x+4\right)\left(x^{2}+16\right).
\frac{3\left(x+4\right)}{\left(x-4\right)\left(x+4\right)}+\frac{8\left(x-4\right)}{\left(x-4\right)\left(x+4\right)}+\frac{3+x^{2}}{x^{2}+16}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of x-4 and x+4 is \left(x-4\right)\left(x+4\right). Multiply \frac{3}{x-4} times \frac{x+4}{x+4}. Multiply \frac{8}{x+4} times \frac{x-4}{x-4}.
\frac{3\left(x+4\right)+8\left(x-4\right)}{\left(x-4\right)\left(x+4\right)}+\frac{3+x^{2}}{x^{2}+16}
Since \frac{3\left(x+4\right)}{\left(x-4\right)\left(x+4\right)} and \frac{8\left(x-4\right)}{\left(x-4\right)\left(x+4\right)} have the same denominator, add them by adding their numerators.
\frac{3x+12+8x-32}{\left(x-4\right)\left(x+4\right)}+\frac{3+x^{2}}{x^{2}+16}
Do the multiplications in 3\left(x+4\right)+8\left(x-4\right).
\frac{11x-20}{\left(x-4\right)\left(x+4\right)}+\frac{3+x^{2}}{x^{2}+16}
Combine like terms in 3x+12+8x-32.
\frac{\left(11x-20\right)\left(x^{2}+16\right)}{\left(x-4\right)\left(x+4\right)\left(x^{2}+16\right)}+\frac{\left(3+x^{2}\right)\left(x-4\right)\left(x+4\right)}{\left(x-4\right)\left(x+4\right)\left(x^{2}+16\right)}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of \left(x-4\right)\left(x+4\right) and x^{2}+16 is \left(x-4\right)\left(x+4\right)\left(x^{2}+16\right). Multiply \frac{11x-20}{\left(x-4\right)\left(x+4\right)} times \frac{x^{2}+16}{x^{2}+16}. Multiply \frac{3+x^{2}}{x^{2}+16} times \frac{\left(x-4\right)\left(x+4\right)}{\left(x-4\right)\left(x+4\right)}.
\frac{\left(11x-20\right)\left(x^{2}+16\right)+\left(3+x^{2}\right)\left(x-4\right)\left(x+4\right)}{\left(x-4\right)\left(x+4\right)\left(x^{2}+16\right)}
Since \frac{\left(11x-20\right)\left(x^{2}+16\right)}{\left(x-4\right)\left(x+4\right)\left(x^{2}+16\right)} and \frac{\left(3+x^{2}\right)\left(x-4\right)\left(x+4\right)}{\left(x-4\right)\left(x+4\right)\left(x^{2}+16\right)} have the same denominator, add them by adding their numerators.
\frac{11x^{3}+176x-20x^{2}-320+3x^{2}-48+x^{4}-16x^{2}}{\left(x-4\right)\left(x+4\right)\left(x^{2}+16\right)}
Do the multiplications in \left(11x-20\right)\left(x^{2}+16\right)+\left(3+x^{2}\right)\left(x-4\right)\left(x+4\right).
\frac{11x^{3}+176x-33x^{2}-368+x^{4}}{\left(x-4\right)\left(x+4\right)\left(x^{2}+16\right)}
Combine like terms in 11x^{3}+176x-20x^{2}-320+3x^{2}-48+x^{4}-16x^{2}.
\frac{11x^{3}+176x-33x^{2}-368+x^{4}}{x^{4}-256}
Expand \left(x-4\right)\left(x+4\right)\left(x^{2}+16\right).