Skip to main content
Evaluate
Tick mark Image
Expand
Tick mark Image
Graph

Similar Problems from Web Search

Share

\frac{3\left(x+4\right)\left(-2x+3\right)}{\left(x-4\right)\left(x+4\right)\left(-2x+3\right)}+\frac{8\left(x-4\right)}{\left(x-4\right)\left(x+4\right)\left(-2x+3\right)}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of x-4 and \left(x+4\right)\left(3-2x\right) is \left(x-4\right)\left(x+4\right)\left(-2x+3\right). Multiply \frac{3}{x-4} times \frac{\left(x+4\right)\left(-2x+3\right)}{\left(x+4\right)\left(-2x+3\right)}. Multiply \frac{8}{\left(x+4\right)\left(3-2x\right)} times \frac{x-4}{x-4}.
\frac{3\left(x+4\right)\left(-2x+3\right)+8\left(x-4\right)}{\left(x-4\right)\left(x+4\right)\left(-2x+3\right)}
Since \frac{3\left(x+4\right)\left(-2x+3\right)}{\left(x-4\right)\left(x+4\right)\left(-2x+3\right)} and \frac{8\left(x-4\right)}{\left(x-4\right)\left(x+4\right)\left(-2x+3\right)} have the same denominator, add them by adding their numerators.
\frac{-6x^{2}+9x-24x+36+8x-32}{\left(x-4\right)\left(x+4\right)\left(-2x+3\right)}
Do the multiplications in 3\left(x+4\right)\left(-2x+3\right)+8\left(x-4\right).
\frac{-6x^{2}-7x+4}{\left(x-4\right)\left(x+4\right)\left(-2x+3\right)}
Combine like terms in -6x^{2}+9x-24x+36+8x-32.
\frac{-6x^{2}-7x+4}{-2x^{3}+3x^{2}+32x-48}
Expand \left(x-4\right)\left(x+4\right)\left(-2x+3\right).
\frac{3\left(x+4\right)\left(-2x+3\right)}{\left(x-4\right)\left(x+4\right)\left(-2x+3\right)}+\frac{8\left(x-4\right)}{\left(x-4\right)\left(x+4\right)\left(-2x+3\right)}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of x-4 and \left(x+4\right)\left(3-2x\right) is \left(x-4\right)\left(x+4\right)\left(-2x+3\right). Multiply \frac{3}{x-4} times \frac{\left(x+4\right)\left(-2x+3\right)}{\left(x+4\right)\left(-2x+3\right)}. Multiply \frac{8}{\left(x+4\right)\left(3-2x\right)} times \frac{x-4}{x-4}.
\frac{3\left(x+4\right)\left(-2x+3\right)+8\left(x-4\right)}{\left(x-4\right)\left(x+4\right)\left(-2x+3\right)}
Since \frac{3\left(x+4\right)\left(-2x+3\right)}{\left(x-4\right)\left(x+4\right)\left(-2x+3\right)} and \frac{8\left(x-4\right)}{\left(x-4\right)\left(x+4\right)\left(-2x+3\right)} have the same denominator, add them by adding their numerators.
\frac{-6x^{2}+9x-24x+36+8x-32}{\left(x-4\right)\left(x+4\right)\left(-2x+3\right)}
Do the multiplications in 3\left(x+4\right)\left(-2x+3\right)+8\left(x-4\right).
\frac{-6x^{2}-7x+4}{\left(x-4\right)\left(x+4\right)\left(-2x+3\right)}
Combine like terms in -6x^{2}+9x-24x+36+8x-32.
\frac{-6x^{2}-7x+4}{-2x^{3}+3x^{2}+32x-48}
Expand \left(x-4\right)\left(x+4\right)\left(-2x+3\right).