Skip to main content
Evaluate
Tick mark Image
Differentiate w.r.t. x
Tick mark Image
Graph

Similar Problems from Web Search

Share

\frac{3}{x-3}-\frac{x^{2}}{\left(x-3\right)\left(-x-2\right)}-\frac{2}{x+2}
Factor 6+x-x^{2}.
\frac{3\left(-x-2\right)}{\left(x-3\right)\left(-x-2\right)}-\frac{x^{2}}{\left(x-3\right)\left(-x-2\right)}-\frac{2}{x+2}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of x-3 and \left(x-3\right)\left(-x-2\right) is \left(x-3\right)\left(-x-2\right). Multiply \frac{3}{x-3} times \frac{-x-2}{-x-2}.
\frac{3\left(-x-2\right)-x^{2}}{\left(x-3\right)\left(-x-2\right)}-\frac{2}{x+2}
Since \frac{3\left(-x-2\right)}{\left(x-3\right)\left(-x-2\right)} and \frac{x^{2}}{\left(x-3\right)\left(-x-2\right)} have the same denominator, subtract them by subtracting their numerators.
\frac{-3x-6-x^{2}}{\left(x-3\right)\left(-x-2\right)}-\frac{2}{x+2}
Do the multiplications in 3\left(-x-2\right)-x^{2}.
\frac{-\left(-3x-6-x^{2}\right)}{\left(x-3\right)\left(x+2\right)}-\frac{2\left(x-3\right)}{\left(x-3\right)\left(x+2\right)}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of \left(x-3\right)\left(-x-2\right) and x+2 is \left(x-3\right)\left(x+2\right). Multiply \frac{-3x-6-x^{2}}{\left(x-3\right)\left(-x-2\right)} times \frac{-1}{-1}. Multiply \frac{2}{x+2} times \frac{x-3}{x-3}.
\frac{-\left(-3x-6-x^{2}\right)-2\left(x-3\right)}{\left(x-3\right)\left(x+2\right)}
Since \frac{-\left(-3x-6-x^{2}\right)}{\left(x-3\right)\left(x+2\right)} and \frac{2\left(x-3\right)}{\left(x-3\right)\left(x+2\right)} have the same denominator, subtract them by subtracting their numerators.
\frac{3x+6+x^{2}-2x+6}{\left(x-3\right)\left(x+2\right)}
Do the multiplications in -\left(-3x-6-x^{2}\right)-2\left(x-3\right).
\frac{x+12+x^{2}}{\left(x-3\right)\left(x+2\right)}
Combine like terms in 3x+6+x^{2}-2x+6.
\frac{x+12+x^{2}}{x^{2}-x-6}
Expand \left(x-3\right)\left(x+2\right).