Solve for x
x=3+\frac{3}{y}
y\neq 0
Solve for y
y=-\frac{3}{3-x}
x\neq 3
Graph
Share
Copied to clipboard
3=y\left(x-3\right)
Variable x cannot be equal to 3 since division by zero is not defined. Multiply both sides of the equation by x-3.
3=yx-3y
Use the distributive property to multiply y by x-3.
yx-3y=3
Swap sides so that all variable terms are on the left hand side.
yx=3+3y
Add 3y to both sides.
yx=3y+3
The equation is in standard form.
\frac{yx}{y}=\frac{3y+3}{y}
Divide both sides by y.
x=\frac{3y+3}{y}
Dividing by y undoes the multiplication by y.
x=3+\frac{3}{y}
Divide 3+3y by y.
x=3+\frac{3}{y}\text{, }x\neq 3
Variable x cannot be equal to 3.
3=y\left(x-3\right)
Multiply both sides of the equation by x-3.
3=yx-3y
Use the distributive property to multiply y by x-3.
yx-3y=3
Swap sides so that all variable terms are on the left hand side.
\left(x-3\right)y=3
Combine all terms containing y.
\frac{\left(x-3\right)y}{x-3}=\frac{3}{x-3}
Divide both sides by x-3.
y=\frac{3}{x-3}
Dividing by x-3 undoes the multiplication by x-3.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}