Skip to main content
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

\left(x-2\right)\times 3+x+1=\left(x-3\right)\left(x-2\right)
Variable x cannot be equal to any of the values 2,3 since division by zero is not defined. Multiply both sides of the equation by \left(x-3\right)\left(x-2\right), the least common multiple of x-3,x^{2}-5x+6.
3x-6+x+1=\left(x-3\right)\left(x-2\right)
Use the distributive property to multiply x-2 by 3.
4x-6+1=\left(x-3\right)\left(x-2\right)
Combine 3x and x to get 4x.
4x-5=\left(x-3\right)\left(x-2\right)
Add -6 and 1 to get -5.
4x-5=x^{2}-5x+6
Use the distributive property to multiply x-3 by x-2 and combine like terms.
4x-5-x^{2}=-5x+6
Subtract x^{2} from both sides.
4x-5-x^{2}+5x=6
Add 5x to both sides.
9x-5-x^{2}=6
Combine 4x and 5x to get 9x.
9x-5-x^{2}-6=0
Subtract 6 from both sides.
9x-11-x^{2}=0
Subtract 6 from -5 to get -11.
-x^{2}+9x-11=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-9±\sqrt{9^{2}-4\left(-1\right)\left(-11\right)}}{2\left(-1\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -1 for a, 9 for b, and -11 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-9±\sqrt{81-4\left(-1\right)\left(-11\right)}}{2\left(-1\right)}
Square 9.
x=\frac{-9±\sqrt{81+4\left(-11\right)}}{2\left(-1\right)}
Multiply -4 times -1.
x=\frac{-9±\sqrt{81-44}}{2\left(-1\right)}
Multiply 4 times -11.
x=\frac{-9±\sqrt{37}}{2\left(-1\right)}
Add 81 to -44.
x=\frac{-9±\sqrt{37}}{-2}
Multiply 2 times -1.
x=\frac{\sqrt{37}-9}{-2}
Now solve the equation x=\frac{-9±\sqrt{37}}{-2} when ± is plus. Add -9 to \sqrt{37}.
x=\frac{9-\sqrt{37}}{2}
Divide -9+\sqrt{37} by -2.
x=\frac{-\sqrt{37}-9}{-2}
Now solve the equation x=\frac{-9±\sqrt{37}}{-2} when ± is minus. Subtract \sqrt{37} from -9.
x=\frac{\sqrt{37}+9}{2}
Divide -9-\sqrt{37} by -2.
x=\frac{9-\sqrt{37}}{2} x=\frac{\sqrt{37}+9}{2}
The equation is now solved.
\left(x-2\right)\times 3+x+1=\left(x-3\right)\left(x-2\right)
Variable x cannot be equal to any of the values 2,3 since division by zero is not defined. Multiply both sides of the equation by \left(x-3\right)\left(x-2\right), the least common multiple of x-3,x^{2}-5x+6.
3x-6+x+1=\left(x-3\right)\left(x-2\right)
Use the distributive property to multiply x-2 by 3.
4x-6+1=\left(x-3\right)\left(x-2\right)
Combine 3x and x to get 4x.
4x-5=\left(x-3\right)\left(x-2\right)
Add -6 and 1 to get -5.
4x-5=x^{2}-5x+6
Use the distributive property to multiply x-3 by x-2 and combine like terms.
4x-5-x^{2}=-5x+6
Subtract x^{2} from both sides.
4x-5-x^{2}+5x=6
Add 5x to both sides.
9x-5-x^{2}=6
Combine 4x and 5x to get 9x.
9x-x^{2}=6+5
Add 5 to both sides.
9x-x^{2}=11
Add 6 and 5 to get 11.
-x^{2}+9x=11
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
\frac{-x^{2}+9x}{-1}=\frac{11}{-1}
Divide both sides by -1.
x^{2}+\frac{9}{-1}x=\frac{11}{-1}
Dividing by -1 undoes the multiplication by -1.
x^{2}-9x=\frac{11}{-1}
Divide 9 by -1.
x^{2}-9x=-11
Divide 11 by -1.
x^{2}-9x+\left(-\frac{9}{2}\right)^{2}=-11+\left(-\frac{9}{2}\right)^{2}
Divide -9, the coefficient of the x term, by 2 to get -\frac{9}{2}. Then add the square of -\frac{9}{2} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-9x+\frac{81}{4}=-11+\frac{81}{4}
Square -\frac{9}{2} by squaring both the numerator and the denominator of the fraction.
x^{2}-9x+\frac{81}{4}=\frac{37}{4}
Add -11 to \frac{81}{4}.
\left(x-\frac{9}{2}\right)^{2}=\frac{37}{4}
Factor x^{2}-9x+\frac{81}{4}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{9}{2}\right)^{2}}=\sqrt{\frac{37}{4}}
Take the square root of both sides of the equation.
x-\frac{9}{2}=\frac{\sqrt{37}}{2} x-\frac{9}{2}=-\frac{\sqrt{37}}{2}
Simplify.
x=\frac{\sqrt{37}+9}{2} x=\frac{9-\sqrt{37}}{2}
Add \frac{9}{2} to both sides of the equation.