Solve for x
x = \frac{43}{17} = 2\frac{9}{17} \approx 2.529411765
Graph
Share
Copied to clipboard
3\times 3+3\left(x-2\right)\left(-\frac{2}{3}\right)=15\left(x-2\right)
Variable x cannot be equal to 2 since division by zero is not defined. Multiply both sides of the equation by 3\left(x-2\right), the least common multiple of x-2,3.
9+3\left(x-2\right)\left(-\frac{2}{3}\right)=15\left(x-2\right)
Multiply 3 and 3 to get 9.
9-2\left(x-2\right)=15\left(x-2\right)
Multiply 3 and -\frac{2}{3} to get -2.
9-2x+4=15\left(x-2\right)
Use the distributive property to multiply -2 by x-2.
13-2x=15\left(x-2\right)
Add 9 and 4 to get 13.
13-2x=15x-30
Use the distributive property to multiply 15 by x-2.
13-2x-15x=-30
Subtract 15x from both sides.
13-17x=-30
Combine -2x and -15x to get -17x.
-17x=-30-13
Subtract 13 from both sides.
-17x=-43
Subtract 13 from -30 to get -43.
x=\frac{-43}{-17}
Divide both sides by -17.
x=\frac{43}{17}
Fraction \frac{-43}{-17} can be simplified to \frac{43}{17} by removing the negative sign from both the numerator and the denominator.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}