Skip to main content
Evaluate
Tick mark Image
Differentiate w.r.t. x
Tick mark Image
Graph

Similar Problems from Web Search

Share

\frac{3\left(x+1\right)}{\left(x-1\right)\left(x+1\right)}+\frac{x\left(x-1\right)}{\left(x-1\right)\left(x+1\right)}+\frac{4}{x^{2}+2}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of x-1 and x+1 is \left(x-1\right)\left(x+1\right). Multiply \frac{3}{x-1} times \frac{x+1}{x+1}. Multiply \frac{x}{x+1} times \frac{x-1}{x-1}.
\frac{3\left(x+1\right)+x\left(x-1\right)}{\left(x-1\right)\left(x+1\right)}+\frac{4}{x^{2}+2}
Since \frac{3\left(x+1\right)}{\left(x-1\right)\left(x+1\right)} and \frac{x\left(x-1\right)}{\left(x-1\right)\left(x+1\right)} have the same denominator, add them by adding their numerators.
\frac{3x+3+x^{2}-x}{\left(x-1\right)\left(x+1\right)}+\frac{4}{x^{2}+2}
Do the multiplications in 3\left(x+1\right)+x\left(x-1\right).
\frac{2x+3+x^{2}}{\left(x-1\right)\left(x+1\right)}+\frac{4}{x^{2}+2}
Combine like terms in 3x+3+x^{2}-x.
\frac{\left(2x+3+x^{2}\right)\left(x^{2}+2\right)}{\left(x-1\right)\left(x+1\right)\left(x^{2}+2\right)}+\frac{4\left(x-1\right)\left(x+1\right)}{\left(x-1\right)\left(x+1\right)\left(x^{2}+2\right)}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of \left(x-1\right)\left(x+1\right) and x^{2}+2 is \left(x-1\right)\left(x+1\right)\left(x^{2}+2\right). Multiply \frac{2x+3+x^{2}}{\left(x-1\right)\left(x+1\right)} times \frac{x^{2}+2}{x^{2}+2}. Multiply \frac{4}{x^{2}+2} times \frac{\left(x-1\right)\left(x+1\right)}{\left(x-1\right)\left(x+1\right)}.
\frac{\left(2x+3+x^{2}\right)\left(x^{2}+2\right)+4\left(x-1\right)\left(x+1\right)}{\left(x-1\right)\left(x+1\right)\left(x^{2}+2\right)}
Since \frac{\left(2x+3+x^{2}\right)\left(x^{2}+2\right)}{\left(x-1\right)\left(x+1\right)\left(x^{2}+2\right)} and \frac{4\left(x-1\right)\left(x+1\right)}{\left(x-1\right)\left(x+1\right)\left(x^{2}+2\right)} have the same denominator, add them by adding their numerators.
\frac{2x^{3}+4x+3x^{2}+6+x^{4}+2x^{2}+4x^{2}+4x-4x-4}{\left(x-1\right)\left(x+1\right)\left(x^{2}+2\right)}
Do the multiplications in \left(2x+3+x^{2}\right)\left(x^{2}+2\right)+4\left(x-1\right)\left(x+1\right).
\frac{2x^{3}+4x+9x^{2}+2+x^{4}}{\left(x-1\right)\left(x+1\right)\left(x^{2}+2\right)}
Combine like terms in 2x^{3}+4x+3x^{2}+6+x^{4}+2x^{2}+4x^{2}+4x-4x-4.
\frac{2x^{3}+4x+9x^{2}+2+x^{4}}{x^{4}+x^{2}-2}
Expand \left(x-1\right)\left(x+1\right)\left(x^{2}+2\right).