Solve for x
x=\frac{3y}{3y+2}
y\neq 0\text{ and }y\neq -\frac{2}{3}
Solve for y
y=-\frac{2x}{3\left(x-1\right)}
x\neq 0\text{ and }x\neq 1
Graph
Share
Copied to clipboard
y\times 3-x\times 2=3xy
Variable x cannot be equal to 0 since division by zero is not defined. Multiply both sides of the equation by xy, the least common multiple of x,y.
y\times 3-x\times 2-3xy=0
Subtract 3xy from both sides.
-x\times 2-3xy=-y\times 3
Subtract y\times 3 from both sides. Anything subtracted from zero gives its negation.
-2x-3xy=-y\times 3
Multiply -1 and 2 to get -2.
-2x-3xy=-3y
Multiply -1 and 3 to get -3.
\left(-2-3y\right)x=-3y
Combine all terms containing x.
\left(-3y-2\right)x=-3y
The equation is in standard form.
\frac{\left(-3y-2\right)x}{-3y-2}=-\frac{3y}{-3y-2}
Divide both sides by -2-3y.
x=-\frac{3y}{-3y-2}
Dividing by -2-3y undoes the multiplication by -2-3y.
x=\frac{3y}{3y+2}
Divide -3y by -2-3y.
x=\frac{3y}{3y+2}\text{, }x\neq 0
Variable x cannot be equal to 0.
y\times 3-x\times 2=3xy
Variable y cannot be equal to 0 since division by zero is not defined. Multiply both sides of the equation by xy, the least common multiple of x,y.
y\times 3-x\times 2-3xy=0
Subtract 3xy from both sides.
y\times 3-3xy=x\times 2
Add x\times 2 to both sides. Anything plus zero gives itself.
\left(3-3x\right)y=x\times 2
Combine all terms containing y.
\left(3-3x\right)y=2x
The equation is in standard form.
\frac{\left(3-3x\right)y}{3-3x}=\frac{2x}{3-3x}
Divide both sides by -3x+3.
y=\frac{2x}{3-3x}
Dividing by -3x+3 undoes the multiplication by -3x+3.
y=\frac{2x}{3\left(1-x\right)}
Divide 2x by -3x+3.
y=\frac{2x}{3\left(1-x\right)}\text{, }y\neq 0
Variable y cannot be equal to 0.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}