Solve for g
g\neq 0
x\neq 0
Solve for x
x\neq 0
g\neq 0
Graph
Share
Copied to clipboard
g\times 3\times \frac{1}{g}=3
Variable g cannot be equal to 0 since division by zero is not defined. Multiply both sides of the equation by gx, the least common multiple of x,g,xg.
\frac{g}{g}\times 3=3
Express g\times \frac{1}{g} as a single fraction.
\frac{g\times 3}{g}=3
Express \frac{g}{g}\times 3 as a single fraction.
g\times 3=3g
Variable g cannot be equal to 0 since division by zero is not defined. Multiply both sides of the equation by g.
\text{true}
Reorder the terms.
g\in \mathrm{R}
This is true for any g.
g\in \mathrm{R}\setminus 0
Variable g cannot be equal to 0.
g\times 3\times \frac{1}{g}=3
Variable x cannot be equal to 0 since division by zero is not defined. Multiply both sides of the equation by gx, the least common multiple of x,g,xg.
\frac{g}{g}\times 3=3
Express g\times \frac{1}{g} as a single fraction.
1\times 3=3
Cancel out g in both numerator and denominator.
3=3
Multiply 1 and 3 to get 3.
\text{true}
Compare 3 and 3.
x\in \mathrm{R}
This is true for any x.
x\in \mathrm{R}\setminus 0
Variable x cannot be equal to 0.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}