Solve for x
x = \frac{\sqrt{10189} + 101}{2} \approx 100.970288289
x=\frac{101-\sqrt{10189}}{2}\approx 0.029711711
Graph
Share
Copied to clipboard
3+xx=101x
Variable x cannot be equal to 0 since division by zero is not defined. Multiply both sides of the equation by x.
3+x^{2}=101x
Multiply x and x to get x^{2}.
3+x^{2}-101x=0
Subtract 101x from both sides.
x^{2}-101x+3=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-\left(-101\right)±\sqrt{\left(-101\right)^{2}-4\times 3}}{2}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 1 for a, -101 for b, and 3 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-101\right)±\sqrt{10201-4\times 3}}{2}
Square -101.
x=\frac{-\left(-101\right)±\sqrt{10201-12}}{2}
Multiply -4 times 3.
x=\frac{-\left(-101\right)±\sqrt{10189}}{2}
Add 10201 to -12.
x=\frac{101±\sqrt{10189}}{2}
The opposite of -101 is 101.
x=\frac{\sqrt{10189}+101}{2}
Now solve the equation x=\frac{101±\sqrt{10189}}{2} when ± is plus. Add 101 to \sqrt{10189}.
x=\frac{101-\sqrt{10189}}{2}
Now solve the equation x=\frac{101±\sqrt{10189}}{2} when ± is minus. Subtract \sqrt{10189} from 101.
x=\frac{\sqrt{10189}+101}{2} x=\frac{101-\sqrt{10189}}{2}
The equation is now solved.
3+xx=101x
Variable x cannot be equal to 0 since division by zero is not defined. Multiply both sides of the equation by x.
3+x^{2}=101x
Multiply x and x to get x^{2}.
3+x^{2}-101x=0
Subtract 101x from both sides.
x^{2}-101x=-3
Subtract 3 from both sides. Anything subtracted from zero gives its negation.
x^{2}-101x+\left(-\frac{101}{2}\right)^{2}=-3+\left(-\frac{101}{2}\right)^{2}
Divide -101, the coefficient of the x term, by 2 to get -\frac{101}{2}. Then add the square of -\frac{101}{2} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-101x+\frac{10201}{4}=-3+\frac{10201}{4}
Square -\frac{101}{2} by squaring both the numerator and the denominator of the fraction.
x^{2}-101x+\frac{10201}{4}=\frac{10189}{4}
Add -3 to \frac{10201}{4}.
\left(x-\frac{101}{2}\right)^{2}=\frac{10189}{4}
Factor x^{2}-101x+\frac{10201}{4}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{101}{2}\right)^{2}}=\sqrt{\frac{10189}{4}}
Take the square root of both sides of the equation.
x-\frac{101}{2}=\frac{\sqrt{10189}}{2} x-\frac{101}{2}=-\frac{\sqrt{10189}}{2}
Simplify.
x=\frac{\sqrt{10189}+101}{2} x=\frac{101-\sqrt{10189}}{2}
Add \frac{101}{2} to both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}