Solve for x
x=\frac{3}{y+4}
y\neq -4
Solve for y
y=-4+\frac{3}{x}
x\neq 0
Graph
Share
Copied to clipboard
3+x\times 4-yx=8x
Variable x cannot be equal to 0 since division by zero is not defined. Multiply both sides of the equation by x.
3+x\times 4-yx-8x=0
Subtract 8x from both sides.
3-4x-yx=0
Combine x\times 4 and -8x to get -4x.
-4x-yx=-3
Subtract 3 from both sides. Anything subtracted from zero gives its negation.
\left(-4-y\right)x=-3
Combine all terms containing x.
\left(-y-4\right)x=-3
The equation is in standard form.
\frac{\left(-y-4\right)x}{-y-4}=-\frac{3}{-y-4}
Divide both sides by -y-4.
x=-\frac{3}{-y-4}
Dividing by -y-4 undoes the multiplication by -y-4.
x=\frac{3}{y+4}
Divide -3 by -y-4.
x=\frac{3}{y+4}\text{, }x\neq 0
Variable x cannot be equal to 0.
3+x\times 4-yx=8x
Multiply both sides of the equation by x.
x\times 4-yx=8x-3
Subtract 3 from both sides.
-yx=8x-3-x\times 4
Subtract x\times 4 from both sides.
-yx=4x-3
Combine 8x and -x\times 4 to get 4x.
\left(-x\right)y=4x-3
The equation is in standard form.
\frac{\left(-x\right)y}{-x}=\frac{4x-3}{-x}
Divide both sides by -x.
y=\frac{4x-3}{-x}
Dividing by -x undoes the multiplication by -x.
y=-4+\frac{3}{x}
Divide 4x-3 by -x.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}