Solve for y
y=\frac{x}{9-11x}
x\neq 0\text{ and }x\neq \frac{9}{11}
Solve for x
x=\frac{9y}{11y+1}
y\neq 0\text{ and }y\neq -\frac{1}{11}
Graph
Share
Copied to clipboard
y\times 3+y\times 6-x=11xy
Variable y cannot be equal to 0 since division by zero is not defined. Multiply both sides of the equation by xy, the least common multiple of x,y.
9y-x=11xy
Combine y\times 3 and y\times 6 to get 9y.
9y-x-11xy=0
Subtract 11xy from both sides.
9y-11xy=x
Add x to both sides. Anything plus zero gives itself.
\left(9-11x\right)y=x
Combine all terms containing y.
\frac{\left(9-11x\right)y}{9-11x}=\frac{x}{9-11x}
Divide both sides by 9-11x.
y=\frac{x}{9-11x}
Dividing by 9-11x undoes the multiplication by 9-11x.
y=\frac{x}{9-11x}\text{, }y\neq 0
Variable y cannot be equal to 0.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}