Solve for m
m=-\frac{2nx}{3n-x}
n\neq 0\text{ and }x\neq 0\text{ and }x\neq 3n
Solve for n
n=\frac{mx}{2x+3m}
x\neq 0\text{ and }m\neq 0\text{ and }x\neq -\frac{3m}{2}
Graph
Share
Copied to clipboard
mn\times 3+nx\times 2=mx
Variable m cannot be equal to 0 since division by zero is not defined. Multiply both sides of the equation by mnx, the least common multiple of x,m,n.
mn\times 3+nx\times 2-mx=0
Subtract mx from both sides.
mn\times 3-mx=-nx\times 2
Subtract nx\times 2 from both sides. Anything subtracted from zero gives its negation.
mn\times 3-mx=-2nx
Multiply -1 and 2 to get -2.
\left(n\times 3-x\right)m=-2nx
Combine all terms containing m.
\left(3n-x\right)m=-2nx
The equation is in standard form.
\frac{\left(3n-x\right)m}{3n-x}=-\frac{2nx}{3n-x}
Divide both sides by 3n-x.
m=-\frac{2nx}{3n-x}
Dividing by 3n-x undoes the multiplication by 3n-x.
m=-\frac{2nx}{3n-x}\text{, }m\neq 0
Variable m cannot be equal to 0.
mn\times 3+nx\times 2=mx
Variable n cannot be equal to 0 since division by zero is not defined. Multiply both sides of the equation by mnx, the least common multiple of x,m,n.
2nx+3mn=mx
Reorder the terms.
\left(2x+3m\right)n=mx
Combine all terms containing n.
\frac{\left(2x+3m\right)n}{2x+3m}=\frac{mx}{2x+3m}
Divide both sides by 2x+3m.
n=\frac{mx}{2x+3m}
Dividing by 2x+3m undoes the multiplication by 2x+3m.
n=\frac{mx}{2x+3m}\text{, }n\neq 0
Variable n cannot be equal to 0.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}