Solve for x
x=-\frac{4}{15}\approx -0.266666667
Graph
Share
Copied to clipboard
6x\times 3+2\times 2=x\times 3
Variable x cannot be equal to 0 since division by zero is not defined. Multiply both sides of the equation by 6x^{2}, the least common multiple of x,3x^{2},6x.
18x+2\times 2=x\times 3
Multiply 6 and 3 to get 18.
18x+4=x\times 3
Multiply 2 and 2 to get 4.
18x+4-x\times 3=0
Subtract x\times 3 from both sides.
15x+4=0
Combine 18x and -x\times 3 to get 15x.
15x=-4
Subtract 4 from both sides. Anything subtracted from zero gives its negation.
x=\frac{-4}{15}
Divide both sides by 15.
x=-\frac{4}{15}
Fraction \frac{-4}{15} can be rewritten as -\frac{4}{15} by extracting the negative sign.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}