Skip to main content
Evaluate
Tick mark Image
Expand
Tick mark Image
Graph

Similar Problems from Web Search

Share

\frac{3}{\left(x-3\right)\left(x+2\right)}-\frac{1}{x\left(x+4\right)}
Factor x^{2}-x-6.
\frac{3x\left(x+4\right)}{x\left(x-3\right)\left(x+2\right)\left(x+4\right)}-\frac{\left(x-3\right)\left(x+2\right)}{x\left(x-3\right)\left(x+2\right)\left(x+4\right)}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of \left(x-3\right)\left(x+2\right) and x\left(x+4\right) is x\left(x-3\right)\left(x+2\right)\left(x+4\right). Multiply \frac{3}{\left(x-3\right)\left(x+2\right)} times \frac{x\left(x+4\right)}{x\left(x+4\right)}. Multiply \frac{1}{x\left(x+4\right)} times \frac{\left(x-3\right)\left(x+2\right)}{\left(x-3\right)\left(x+2\right)}.
\frac{3x\left(x+4\right)-\left(x-3\right)\left(x+2\right)}{x\left(x-3\right)\left(x+2\right)\left(x+4\right)}
Since \frac{3x\left(x+4\right)}{x\left(x-3\right)\left(x+2\right)\left(x+4\right)} and \frac{\left(x-3\right)\left(x+2\right)}{x\left(x-3\right)\left(x+2\right)\left(x+4\right)} have the same denominator, subtract them by subtracting their numerators.
\frac{3x^{2}+12x-x^{2}-2x+3x+6}{x\left(x-3\right)\left(x+2\right)\left(x+4\right)}
Do the multiplications in 3x\left(x+4\right)-\left(x-3\right)\left(x+2\right).
\frac{2x^{2}+13x+6}{x\left(x-3\right)\left(x+2\right)\left(x+4\right)}
Combine like terms in 3x^{2}+12x-x^{2}-2x+3x+6.
\frac{2x^{2}+13x+6}{x^{4}+3x^{3}-10x^{2}-24x}
Expand x\left(x-3\right)\left(x+2\right)\left(x+4\right).
\frac{3}{\left(x-3\right)\left(x+2\right)}-\frac{1}{x\left(x+4\right)}
Factor x^{2}-x-6.
\frac{3x\left(x+4\right)}{x\left(x-3\right)\left(x+2\right)\left(x+4\right)}-\frac{\left(x-3\right)\left(x+2\right)}{x\left(x-3\right)\left(x+2\right)\left(x+4\right)}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of \left(x-3\right)\left(x+2\right) and x\left(x+4\right) is x\left(x-3\right)\left(x+2\right)\left(x+4\right). Multiply \frac{3}{\left(x-3\right)\left(x+2\right)} times \frac{x\left(x+4\right)}{x\left(x+4\right)}. Multiply \frac{1}{x\left(x+4\right)} times \frac{\left(x-3\right)\left(x+2\right)}{\left(x-3\right)\left(x+2\right)}.
\frac{3x\left(x+4\right)-\left(x-3\right)\left(x+2\right)}{x\left(x-3\right)\left(x+2\right)\left(x+4\right)}
Since \frac{3x\left(x+4\right)}{x\left(x-3\right)\left(x+2\right)\left(x+4\right)} and \frac{\left(x-3\right)\left(x+2\right)}{x\left(x-3\right)\left(x+2\right)\left(x+4\right)} have the same denominator, subtract them by subtracting their numerators.
\frac{3x^{2}+12x-x^{2}-2x+3x+6}{x\left(x-3\right)\left(x+2\right)\left(x+4\right)}
Do the multiplications in 3x\left(x+4\right)-\left(x-3\right)\left(x+2\right).
\frac{2x^{2}+13x+6}{x\left(x-3\right)\left(x+2\right)\left(x+4\right)}
Combine like terms in 3x^{2}+12x-x^{2}-2x+3x+6.
\frac{2x^{2}+13x+6}{x^{4}+3x^{3}-10x^{2}-24x}
Expand x\left(x-3\right)\left(x+2\right)\left(x+4\right).