Skip to main content
Evaluate
Tick mark Image
Expand
Tick mark Image
Graph

Similar Problems from Web Search

Share

\frac{3}{x^{2}-4}-\frac{2\left(4x+1\right)}{\left(x-2\right)\left(4x+1\right)}
Factor the expressions that are not already factored in \frac{8x+2}{4x^{2}-7x-2}.
\frac{3}{x^{2}-4}-\frac{2}{x-2}
Cancel out 4x+1 in both numerator and denominator.
\frac{3}{\left(x-2\right)\left(x+2\right)}-\frac{2}{x-2}
Factor x^{2}-4.
\frac{3}{\left(x-2\right)\left(x+2\right)}-\frac{2\left(x+2\right)}{\left(x-2\right)\left(x+2\right)}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of \left(x-2\right)\left(x+2\right) and x-2 is \left(x-2\right)\left(x+2\right). Multiply \frac{2}{x-2} times \frac{x+2}{x+2}.
\frac{3-2\left(x+2\right)}{\left(x-2\right)\left(x+2\right)}
Since \frac{3}{\left(x-2\right)\left(x+2\right)} and \frac{2\left(x+2\right)}{\left(x-2\right)\left(x+2\right)} have the same denominator, subtract them by subtracting their numerators.
\frac{3-2x-4}{\left(x-2\right)\left(x+2\right)}
Do the multiplications in 3-2\left(x+2\right).
\frac{-1-2x}{\left(x-2\right)\left(x+2\right)}
Combine like terms in 3-2x-4.
\frac{-1-2x}{x^{2}-4}
Expand \left(x-2\right)\left(x+2\right).
\frac{3}{x^{2}-4}-\frac{2\left(4x+1\right)}{\left(x-2\right)\left(4x+1\right)}
Factor the expressions that are not already factored in \frac{8x+2}{4x^{2}-7x-2}.
\frac{3}{x^{2}-4}-\frac{2}{x-2}
Cancel out 4x+1 in both numerator and denominator.
\frac{3}{\left(x-2\right)\left(x+2\right)}-\frac{2}{x-2}
Factor x^{2}-4.
\frac{3}{\left(x-2\right)\left(x+2\right)}-\frac{2\left(x+2\right)}{\left(x-2\right)\left(x+2\right)}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of \left(x-2\right)\left(x+2\right) and x-2 is \left(x-2\right)\left(x+2\right). Multiply \frac{2}{x-2} times \frac{x+2}{x+2}.
\frac{3-2\left(x+2\right)}{\left(x-2\right)\left(x+2\right)}
Since \frac{3}{\left(x-2\right)\left(x+2\right)} and \frac{2\left(x+2\right)}{\left(x-2\right)\left(x+2\right)} have the same denominator, subtract them by subtracting their numerators.
\frac{3-2x-4}{\left(x-2\right)\left(x+2\right)}
Do the multiplications in 3-2\left(x+2\right).
\frac{-1-2x}{\left(x-2\right)\left(x+2\right)}
Combine like terms in 3-2x-4.
\frac{-1-2x}{x^{2}-4}
Expand \left(x-2\right)\left(x+2\right).