Skip to main content
Evaluate
Tick mark Image
Differentiate w.r.t. x
Tick mark Image
Graph

Similar Problems from Web Search

Share

\frac{3}{\left(x-4\right)\left(x+6\right)}+\frac{x}{\left(x-3\right)\left(x+6\right)}
Factor x^{2}+2x-24. Factor x^{2}+3x-18.
\frac{3\left(x-3\right)}{\left(x-4\right)\left(x-3\right)\left(x+6\right)}+\frac{x\left(x-4\right)}{\left(x-4\right)\left(x-3\right)\left(x+6\right)}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of \left(x-4\right)\left(x+6\right) and \left(x-3\right)\left(x+6\right) is \left(x-4\right)\left(x-3\right)\left(x+6\right). Multiply \frac{3}{\left(x-4\right)\left(x+6\right)} times \frac{x-3}{x-3}. Multiply \frac{x}{\left(x-3\right)\left(x+6\right)} times \frac{x-4}{x-4}.
\frac{3\left(x-3\right)+x\left(x-4\right)}{\left(x-4\right)\left(x-3\right)\left(x+6\right)}
Since \frac{3\left(x-3\right)}{\left(x-4\right)\left(x-3\right)\left(x+6\right)} and \frac{x\left(x-4\right)}{\left(x-4\right)\left(x-3\right)\left(x+6\right)} have the same denominator, add them by adding their numerators.
\frac{3x-9+x^{2}-4x}{\left(x-4\right)\left(x-3\right)\left(x+6\right)}
Do the multiplications in 3\left(x-3\right)+x\left(x-4\right).
\frac{-x-9+x^{2}}{\left(x-4\right)\left(x-3\right)\left(x+6\right)}
Combine like terms in 3x-9+x^{2}-4x.
\frac{-x-9+x^{2}}{x^{3}-x^{2}-30x+72}
Expand \left(x-4\right)\left(x-3\right)\left(x+6\right).