Skip to main content
Evaluate
Tick mark Image
Differentiate w.r.t. x
Tick mark Image
Graph

Similar Problems from Web Search

Share

\frac{3\left(x-3\right)}{\left(x^{2}+2x-15\right)\times 15}
Divide \frac{3}{x^{2}+2x-15} by \frac{15}{x-3} by multiplying \frac{3}{x^{2}+2x-15} by the reciprocal of \frac{15}{x-3}.
\frac{x-3}{5\left(x^{2}+2x-15\right)}
Cancel out 3 in both numerator and denominator.
\frac{x-3}{5\left(x-3\right)\left(x+5\right)}
Factor the expressions that are not already factored.
\frac{1}{5\left(x+5\right)}
Cancel out x-3 in both numerator and denominator.
\frac{1}{5x+25}
Expand the expression.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{3\left(x-3\right)}{\left(x^{2}+2x-15\right)\times 15})
Divide \frac{3}{x^{2}+2x-15} by \frac{15}{x-3} by multiplying \frac{3}{x^{2}+2x-15} by the reciprocal of \frac{15}{x-3}.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{x-3}{5\left(x^{2}+2x-15\right)})
Cancel out 3 in both numerator and denominator.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{x-3}{5\left(x-3\right)\left(x+5\right)})
Factor the expressions that are not already factored in \frac{x-3}{5\left(x^{2}+2x-15\right)}.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{1}{5\left(x+5\right)})
Cancel out x-3 in both numerator and denominator.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{1}{5x+25})
Use the distributive property to multiply 5 by x+5.
-\left(5x^{1}+25\right)^{-1-1}\frac{\mathrm{d}}{\mathrm{d}x}(5x^{1}+25)
If F is the composition of two differentiable functions f\left(u\right) and u=g\left(x\right), that is, if F\left(x\right)=f\left(g\left(x\right)\right), then the derivative of F is the derivative of f with respect to u times the derivative of g with respect to x, that is, \frac{\mathrm{d}}{\mathrm{d}x}(F)\left(x\right)=\frac{\mathrm{d}}{\mathrm{d}x}(f)\left(g\left(x\right)\right)\frac{\mathrm{d}}{\mathrm{d}x}(g)\left(x\right).
-\left(5x^{1}+25\right)^{-2}\times 5x^{1-1}
The derivative of a polynomial is the sum of the derivatives of its terms. The derivative of a constant term is 0. The derivative of ax^{n} is nax^{n-1}.
-5x^{0}\left(5x^{1}+25\right)^{-2}
Simplify.
-5x^{0}\left(5x+25\right)^{-2}
For any term t, t^{1}=t.
-5\left(5x+25\right)^{-2}
For any term t except 0, t^{0}=1.