Evaluate
\frac{1}{5\left(x+5\right)}
Differentiate w.r.t. x
-\frac{1}{5\left(x+5\right)^{2}}
Graph
Quiz
Polynomial
5 problems similar to:
\frac { 3 } { x ^ { 2 } + 2 x - 15 } : \frac { 15 } { x - 3 } =
Share
Copied to clipboard
\frac{3\left(x-3\right)}{\left(x^{2}+2x-15\right)\times 15}
Divide \frac{3}{x^{2}+2x-15} by \frac{15}{x-3} by multiplying \frac{3}{x^{2}+2x-15} by the reciprocal of \frac{15}{x-3}.
\frac{x-3}{5\left(x^{2}+2x-15\right)}
Cancel out 3 in both numerator and denominator.
\frac{x-3}{5\left(x-3\right)\left(x+5\right)}
Factor the expressions that are not already factored.
\frac{1}{5\left(x+5\right)}
Cancel out x-3 in both numerator and denominator.
\frac{1}{5x+25}
Expand the expression.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{3\left(x-3\right)}{\left(x^{2}+2x-15\right)\times 15})
Divide \frac{3}{x^{2}+2x-15} by \frac{15}{x-3} by multiplying \frac{3}{x^{2}+2x-15} by the reciprocal of \frac{15}{x-3}.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{x-3}{5\left(x^{2}+2x-15\right)})
Cancel out 3 in both numerator and denominator.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{x-3}{5\left(x-3\right)\left(x+5\right)})
Factor the expressions that are not already factored in \frac{x-3}{5\left(x^{2}+2x-15\right)}.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{1}{5\left(x+5\right)})
Cancel out x-3 in both numerator and denominator.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{1}{5x+25})
Use the distributive property to multiply 5 by x+5.
-\left(5x^{1}+25\right)^{-1-1}\frac{\mathrm{d}}{\mathrm{d}x}(5x^{1}+25)
If F is the composition of two differentiable functions f\left(u\right) and u=g\left(x\right), that is, if F\left(x\right)=f\left(g\left(x\right)\right), then the derivative of F is the derivative of f with respect to u times the derivative of g with respect to x, that is, \frac{\mathrm{d}}{\mathrm{d}x}(F)\left(x\right)=\frac{\mathrm{d}}{\mathrm{d}x}(f)\left(g\left(x\right)\right)\frac{\mathrm{d}}{\mathrm{d}x}(g)\left(x\right).
-\left(5x^{1}+25\right)^{-2}\times 5x^{1-1}
The derivative of a polynomial is the sum of the derivatives of its terms. The derivative of a constant term is 0. The derivative of ax^{n} is nax^{n-1}.
-5x^{0}\left(5x^{1}+25\right)^{-2}
Simplify.
-5x^{0}\left(5x+25\right)^{-2}
For any term t, t^{1}=t.
-5\left(5x+25\right)^{-2}
For any term t except 0, t^{0}=1.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}