Solve for x
x = -\frac{17}{10} = -1\frac{7}{10} = -1.7
Graph
Share
Copied to clipboard
\left(2x-1\right)\times 3=-\left(5+x\right)\times 4
Variable x cannot be equal to any of the values -5,\frac{1}{2} since division by zero is not defined. Multiply both sides of the equation by \left(2x-1\right)\left(x+5\right), the least common multiple of x+5,1-2x.
6x-3=-\left(5+x\right)\times 4
Use the distributive property to multiply 2x-1 by 3.
6x-3=-4\left(5+x\right)
Multiply -1 and 4 to get -4.
6x-3=-20-4x
Use the distributive property to multiply -4 by 5+x.
6x-3+4x=-20
Add 4x to both sides.
10x-3=-20
Combine 6x and 4x to get 10x.
10x=-20+3
Add 3 to both sides.
10x=-17
Add -20 and 3 to get -17.
x=\frac{-17}{10}
Divide both sides by 10.
x=-\frac{17}{10}
Fraction \frac{-17}{10} can be rewritten as -\frac{17}{10} by extracting the negative sign.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}