Solve for x (complex solution)
x=\frac{-\sqrt{23}i-1}{2}\approx -0.5-2.397915762i
x=\frac{-1+\sqrt{23}i}{2}\approx -0.5+2.397915762i
Graph
Share
Copied to clipboard
\left(x-1\right)\times 3=\left(x-1\right)\left(x+3\right)+\left(x+3\right)\times 2
Variable x cannot be equal to any of the values -3,1 since division by zero is not defined. Multiply both sides of the equation by \left(x-1\right)\left(x+3\right), the least common multiple of x+3,x-1.
3x-3=\left(x-1\right)\left(x+3\right)+\left(x+3\right)\times 2
Use the distributive property to multiply x-1 by 3.
3x-3=x^{2}+2x-3+\left(x+3\right)\times 2
Use the distributive property to multiply x-1 by x+3 and combine like terms.
3x-3=x^{2}+2x-3+2x+6
Use the distributive property to multiply x+3 by 2.
3x-3=x^{2}+4x-3+6
Combine 2x and 2x to get 4x.
3x-3=x^{2}+4x+3
Add -3 and 6 to get 3.
3x-3-x^{2}=4x+3
Subtract x^{2} from both sides.
3x-3-x^{2}-4x=3
Subtract 4x from both sides.
-x-3-x^{2}=3
Combine 3x and -4x to get -x.
-x-3-x^{2}-3=0
Subtract 3 from both sides.
-x-6-x^{2}=0
Subtract 3 from -3 to get -6.
-x^{2}-x-6=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-\left(-1\right)±\sqrt{1-4\left(-1\right)\left(-6\right)}}{2\left(-1\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -1 for a, -1 for b, and -6 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-1\right)±\sqrt{1+4\left(-6\right)}}{2\left(-1\right)}
Multiply -4 times -1.
x=\frac{-\left(-1\right)±\sqrt{1-24}}{2\left(-1\right)}
Multiply 4 times -6.
x=\frac{-\left(-1\right)±\sqrt{-23}}{2\left(-1\right)}
Add 1 to -24.
x=\frac{-\left(-1\right)±\sqrt{23}i}{2\left(-1\right)}
Take the square root of -23.
x=\frac{1±\sqrt{23}i}{2\left(-1\right)}
The opposite of -1 is 1.
x=\frac{1±\sqrt{23}i}{-2}
Multiply 2 times -1.
x=\frac{1+\sqrt{23}i}{-2}
Now solve the equation x=\frac{1±\sqrt{23}i}{-2} when ± is plus. Add 1 to i\sqrt{23}.
x=\frac{-\sqrt{23}i-1}{2}
Divide 1+i\sqrt{23} by -2.
x=\frac{-\sqrt{23}i+1}{-2}
Now solve the equation x=\frac{1±\sqrt{23}i}{-2} when ± is minus. Subtract i\sqrt{23} from 1.
x=\frac{-1+\sqrt{23}i}{2}
Divide 1-i\sqrt{23} by -2.
x=\frac{-\sqrt{23}i-1}{2} x=\frac{-1+\sqrt{23}i}{2}
The equation is now solved.
\left(x-1\right)\times 3=\left(x-1\right)\left(x+3\right)+\left(x+3\right)\times 2
Variable x cannot be equal to any of the values -3,1 since division by zero is not defined. Multiply both sides of the equation by \left(x-1\right)\left(x+3\right), the least common multiple of x+3,x-1.
3x-3=\left(x-1\right)\left(x+3\right)+\left(x+3\right)\times 2
Use the distributive property to multiply x-1 by 3.
3x-3=x^{2}+2x-3+\left(x+3\right)\times 2
Use the distributive property to multiply x-1 by x+3 and combine like terms.
3x-3=x^{2}+2x-3+2x+6
Use the distributive property to multiply x+3 by 2.
3x-3=x^{2}+4x-3+6
Combine 2x and 2x to get 4x.
3x-3=x^{2}+4x+3
Add -3 and 6 to get 3.
3x-3-x^{2}=4x+3
Subtract x^{2} from both sides.
3x-3-x^{2}-4x=3
Subtract 4x from both sides.
-x-3-x^{2}=3
Combine 3x and -4x to get -x.
-x-x^{2}=3+3
Add 3 to both sides.
-x-x^{2}=6
Add 3 and 3 to get 6.
-x^{2}-x=6
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
\frac{-x^{2}-x}{-1}=\frac{6}{-1}
Divide both sides by -1.
x^{2}+\left(-\frac{1}{-1}\right)x=\frac{6}{-1}
Dividing by -1 undoes the multiplication by -1.
x^{2}+x=\frac{6}{-1}
Divide -1 by -1.
x^{2}+x=-6
Divide 6 by -1.
x^{2}+x+\left(\frac{1}{2}\right)^{2}=-6+\left(\frac{1}{2}\right)^{2}
Divide 1, the coefficient of the x term, by 2 to get \frac{1}{2}. Then add the square of \frac{1}{2} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}+x+\frac{1}{4}=-6+\frac{1}{4}
Square \frac{1}{2} by squaring both the numerator and the denominator of the fraction.
x^{2}+x+\frac{1}{4}=-\frac{23}{4}
Add -6 to \frac{1}{4}.
\left(x+\frac{1}{2}\right)^{2}=-\frac{23}{4}
Factor x^{2}+x+\frac{1}{4}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+\frac{1}{2}\right)^{2}}=\sqrt{-\frac{23}{4}}
Take the square root of both sides of the equation.
x+\frac{1}{2}=\frac{\sqrt{23}i}{2} x+\frac{1}{2}=-\frac{\sqrt{23}i}{2}
Simplify.
x=\frac{-1+\sqrt{23}i}{2} x=\frac{-\sqrt{23}i-1}{2}
Subtract \frac{1}{2} from both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}