Skip to main content
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

\left(x-2\right)\left(x+1\right)\times 3=\left(x+1\right)\left(x+2\right)+x^{2}-4
Variable x cannot be equal to any of the values -2,-1,2 since division by zero is not defined. Multiply both sides of the equation by \left(x-2\right)\left(x+1\right)\left(x+2\right), the least common multiple of x+2,x-2,x+1.
\left(x^{2}-x-2\right)\times 3=\left(x+1\right)\left(x+2\right)+x^{2}-4
Use the distributive property to multiply x-2 by x+1 and combine like terms.
3x^{2}-3x-6=\left(x+1\right)\left(x+2\right)+x^{2}-4
Use the distributive property to multiply x^{2}-x-2 by 3.
3x^{2}-3x-6=x^{2}+3x+2+x^{2}-4
Use the distributive property to multiply x+1 by x+2 and combine like terms.
3x^{2}-3x-6=2x^{2}+3x+2-4
Combine x^{2} and x^{2} to get 2x^{2}.
3x^{2}-3x-6=2x^{2}+3x-2
Subtract 4 from 2 to get -2.
3x^{2}-3x-6-2x^{2}=3x-2
Subtract 2x^{2} from both sides.
x^{2}-3x-6=3x-2
Combine 3x^{2} and -2x^{2} to get x^{2}.
x^{2}-3x-6-3x=-2
Subtract 3x from both sides.
x^{2}-6x-6=-2
Combine -3x and -3x to get -6x.
x^{2}-6x-6+2=0
Add 2 to both sides.
x^{2}-6x-4=0
Add -6 and 2 to get -4.
x=\frac{-\left(-6\right)±\sqrt{\left(-6\right)^{2}-4\left(-4\right)}}{2}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 1 for a, -6 for b, and -4 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-6\right)±\sqrt{36-4\left(-4\right)}}{2}
Square -6.
x=\frac{-\left(-6\right)±\sqrt{36+16}}{2}
Multiply -4 times -4.
x=\frac{-\left(-6\right)±\sqrt{52}}{2}
Add 36 to 16.
x=\frac{-\left(-6\right)±2\sqrt{13}}{2}
Take the square root of 52.
x=\frac{6±2\sqrt{13}}{2}
The opposite of -6 is 6.
x=\frac{2\sqrt{13}+6}{2}
Now solve the equation x=\frac{6±2\sqrt{13}}{2} when ± is plus. Add 6 to 2\sqrt{13}.
x=\sqrt{13}+3
Divide 6+2\sqrt{13} by 2.
x=\frac{6-2\sqrt{13}}{2}
Now solve the equation x=\frac{6±2\sqrt{13}}{2} when ± is minus. Subtract 2\sqrt{13} from 6.
x=3-\sqrt{13}
Divide 6-2\sqrt{13} by 2.
x=\sqrt{13}+3 x=3-\sqrt{13}
The equation is now solved.
\left(x-2\right)\left(x+1\right)\times 3=\left(x+1\right)\left(x+2\right)+x^{2}-4
Variable x cannot be equal to any of the values -2,-1,2 since division by zero is not defined. Multiply both sides of the equation by \left(x-2\right)\left(x+1\right)\left(x+2\right), the least common multiple of x+2,x-2,x+1.
\left(x^{2}-x-2\right)\times 3=\left(x+1\right)\left(x+2\right)+x^{2}-4
Use the distributive property to multiply x-2 by x+1 and combine like terms.
3x^{2}-3x-6=\left(x+1\right)\left(x+2\right)+x^{2}-4
Use the distributive property to multiply x^{2}-x-2 by 3.
3x^{2}-3x-6=x^{2}+3x+2+x^{2}-4
Use the distributive property to multiply x+1 by x+2 and combine like terms.
3x^{2}-3x-6=2x^{2}+3x+2-4
Combine x^{2} and x^{2} to get 2x^{2}.
3x^{2}-3x-6=2x^{2}+3x-2
Subtract 4 from 2 to get -2.
3x^{2}-3x-6-2x^{2}=3x-2
Subtract 2x^{2} from both sides.
x^{2}-3x-6=3x-2
Combine 3x^{2} and -2x^{2} to get x^{2}.
x^{2}-3x-6-3x=-2
Subtract 3x from both sides.
x^{2}-6x-6=-2
Combine -3x and -3x to get -6x.
x^{2}-6x=-2+6
Add 6 to both sides.
x^{2}-6x=4
Add -2 and 6 to get 4.
x^{2}-6x+\left(-3\right)^{2}=4+\left(-3\right)^{2}
Divide -6, the coefficient of the x term, by 2 to get -3. Then add the square of -3 to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-6x+9=4+9
Square -3.
x^{2}-6x+9=13
Add 4 to 9.
\left(x-3\right)^{2}=13
Factor x^{2}-6x+9. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-3\right)^{2}}=\sqrt{13}
Take the square root of both sides of the equation.
x-3=\sqrt{13} x-3=-\sqrt{13}
Simplify.
x=\sqrt{13}+3 x=3-\sqrt{13}
Add 3 to both sides of the equation.