Solve for x
x = -\frac{13}{3} = -4\frac{1}{3} \approx -4.333333333
Graph
Share
Copied to clipboard
\left(x-4\right)\times 3+\left(x+1\right)\times 5=\left(x-4\right)\times 5
Variable x cannot be equal to any of the values -1,4 since division by zero is not defined. Multiply both sides of the equation by \left(x-4\right)\left(x+1\right), the least common multiple of x+1,x-4.
3x-12+\left(x+1\right)\times 5=\left(x-4\right)\times 5
Use the distributive property to multiply x-4 by 3.
3x-12+5x+5=\left(x-4\right)\times 5
Use the distributive property to multiply x+1 by 5.
8x-12+5=\left(x-4\right)\times 5
Combine 3x and 5x to get 8x.
8x-7=\left(x-4\right)\times 5
Add -12 and 5 to get -7.
8x-7=5x-20
Use the distributive property to multiply x-4 by 5.
8x-7-5x=-20
Subtract 5x from both sides.
3x-7=-20
Combine 8x and -5x to get 3x.
3x=-20+7
Add 7 to both sides.
3x=-13
Add -20 and 7 to get -13.
x=\frac{-13}{3}
Divide both sides by 3.
x=-\frac{13}{3}
Fraction \frac{-13}{3} can be rewritten as -\frac{13}{3} by extracting the negative sign.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}